Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Shrimp and crab shells are the most promising and viable source of raw material for the manufacturing of chitin and its derivatives. In-depth understanding of the biological properties of chitin and scientific advancements in the field of nanotechnology have enabled the development of high-performance chitin nanomaterials. Nanoscale chitin is of great economic value as a functional and reinforcement material for a wide range of applications including water purification. The use of nano-chitin to produce (bio) nanocomposites offers a good opportunity to prepare membrane materials with enhanced functional and structural properties. Chitosan-based membranes are found to be effective in water purification for the removal of pollutants like organic wastes, heavy metals, antibiotics, pathogenic microbes and acid waste. These membranes are environmentally friendly and can be used as a method to reduce humic acid waste from the aquatic environment. This review focuses on the preparation, characterization and chemical modification of nano chitin membrane and its application for water purification and water treatment.

Sammendrag

Horticultural food waste can be recovered to produce high-value products. Appropriate green solvents and a selection of cleaner production could unlock waste into useful resources for human health. This will significantly reduce greenhouse gas emissions, and CO2 production, and create economic opportunities to contribute to food security.

Til dokument

Sammendrag

The blue crab (Callinectes sapidus), originally from the western Atlantic Ocean, has recently spread to the Mediterranean and is now considered one of the one hundred most invasive species in that region. This opportunistic species, known for its adaptability to different temperatures and salinities, negatively impacts biodiversity and human activities such as fishing and tourism in the Mediterranean. However, the blue crab is gaining interest as a potential food resource due to its high nutritional value and delicate, sweet flavor. Its meat is rich in protein (14% to 30%), omega-3 fatty acids (EPA and DHA) and other essential nutrients beneficial for human health such as vitamins, and minerals. Utilizing this species in the production of new foods could help mitigate the negative impact of its invasiveness and offer economic opportunities. One challenge with this potential resource is the generation of waste. Approximately 6–8 million tonnes of crab shells are produced worldwide each year, leading to disposal problems and concerns regarding environmental sustainability. To improve economic and environmental sustainability, there is a need to valorize these residues, which are an important source of proteins, lipids, chitin, minerals, and pigments that can be processed into high-value-added products. However, especially in areas with industrial pollution, attention should be paid to the heavy metal (Cd and As) contents of blue crab shells. Studies suggest that blue crab by-products can be used in various sectors, reducing environmental impacts, promoting a circular economy, and creating new industrial opportunities.