Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Forfattere
Mehreteab Tesfai Alamu Oladeji Emmanuel Joyce Bakuwa Njoloma Sekhar Udaya Nagothu Joel NgumayoSammendrag
Chapter 8 provides a comprehensive review of literature pertaining to agroecological (AE) farming approaches/practices and knowledge driven from stakeholders’ and scientific studies. The review identifies the major drivers, barriers, gaps, and opportunities of AE practices in the context of African farming systems. The chapter presents the best combinations of AE practices as alternative approaches to the current unsustainable farming practices. Experiences from Zambia and other countries where selected AE practices are being implemented by farmers with the support of diverse stakeholders are shared in the chapter. Further, key ecological, social, and economic indicators developed in the countries are also discussed. The chapter analyses how the AE practices contribute to the reduction of GHG emissions and at the same time address the UN Sustainable Development Goals (SDGs), e.g., SDG 2 (food and nutrition security), SDG 12 (sustainable food production and consumption), SDG 13 (climate action), and SDG 15 (life on land).
Sammendrag
Chapter 9 begins with a brief introduction followed by a conceptual framework showing the linkages and interactions between different institutional, market, and policy factors affecting adoption of climate-neutral and resilient farming systems in the agriculture sector. The chapter then discusses the barriers for adoption, which operate at various levels in the value chains (VCs). The role played by stakeholders (VC actors, farmers’ group, research, government agencies, and donors) in the farmers’ adoption and the dynamics and partnerships to be developed between different VC actors for upscaling CNRFS is analyzed. Experiences from case studies in Africa (Kenya and Rwanda) are shared, demonstrating how strategies to overcome weaknesses and adoption barriers in the selected value chain together with the support of multi-actor partnerships. Toward the end, some concluding remarks and policy recommendations for upscaling CNRFS are provided.
Sammendrag
Aksjon pærebrann” ble etter den første påvisning av pærebrann i Norge i 1986 opprettet som et samarbeidsprosjekt mellom Mattilsynet og NIBIO (Norsk Institutt for Bioøkonomi, Divisjon for Bioteknologi og Plantehelse). Formålet med prosjektet er å overvåke, kartlegge og bekjempe pærebrann. For å oppnå et best mulig resultat i dette arbeidet er den delen av landet der pærebrann forekommer blitt delt opp i tre soner. 1. Pærebrannsone Omfatter områder/kommuner av landet hvor det er blitt påvist pærebrann og hvor det ikke er et mål å utrydde sjukdommen. 2. Bekjempelsessone Omfatter områder/kommuner hvor det er blitt påvist pærebrann og som grenser til kommuner i pærebrannsonen. Her gjøres intensivert overvåking og rydding med formål å hindre videre spredning og på sikt å utrydde sjukdommen. 3. Forebyggende sone Dette er områder uten pærebrann, som er i nærheten av smittefronten og er områder med viktig kommersiell fruktdyrking eller områder i nærheten av slik fruktproduksjon Hensikten er ha en buffer mot spredning til viktige fruktområder eller til andre deler av landet. . I disse områdene skjer overvåkingen på stikkprøvebasis. Friske planter av bulkemispel og pilemispel vil kunne bli fjernet som et forebyggende tiltak I tillegg til disse tre sonene gjennomføres overvåking på stikkprøvebasis i andre deler av landet der pærebrann ikke er påvist. Kommune- og fylkesinndeling er i hovedsak basert på den nye kommune og fylkesinndelingen. Fra 2021 iverksatte Mattilsynet en ny forskrift med inndeling av kommuner og fylker med mange nye navn. Forskrift om kontrollområder for å forebygge, begrense og bekjempe pærebrann (Erwinia amylovora)er tilgjengelig på https://lovdata.no/dokument/SF/forskrift/2020-01-08-51.. Forsrkriften ble sist revidert 5.10.2021 som følge av påvisningene som ble gjort i nye områder i 2021. Med hovedvekt på de viktigste vertplantene ble det i 2021 (2020 tall i parentes) gjort systematisk stikkprøvekontroll i 8 (10) fylker og 100 (140) kommuner. Det ble lagt spesielt vekt på kontroller i fruktdyrkingsområder, planteskoler, planteutsalg og områder rundt disse. Samt å rydde pærebrann i randområder, som f.eks. Grimstad. Til sammen ble det utført 13 954 (14 310) inspeksjoner av vertplanteforekomster. Totalt er det ryddet på 3 069 (1 407) eiendommer. I flere smittede områder har det vært gjennomført systematisk gjennomgang og fjerning av alle registrerte sjuke planter. Men i kommunene Ålesund, Klepp, Gjesdal, Sandnes, Stavanger, Sola, Karmøy, Haugesund, Askøy, Os, Bergen og Kristiansand er pærebrann nå så utbredt at ressursene ikke strekker til for å fjerne planter med smitte. Ellers i smittede områder ble stort sett alle sjuke planter som var registrert, fjernet. I kommersielle frukthager i Norge ble det i 2021 ikke påvist pærebrann noen steder. Tallet på lokaliteter som har blitt ryddet er betydelig større enn i 2020. Dette skyldes mye arbeidet i randsoner for pærebrann, samt mer omfattende rydding rundt planteskole/planteutsalg. Men fortsatt er det mye rydding i såkalte friområder, som er tidkrevende og gir lavere ryddetall. Når det gjelder stikkprøvekontrollen, er denne om lag som i 2020......
Forfattere
Nhat Strøm-AndersenSammendrag
This paper investigates the adoption of digital technologies for food waste reduction and prevention in Norway. It goes beyond studying one single technology, aiming to have a broad understanding of digital technology adoption as ‘a (digital) innovation system’ by applying a multiple case study of four different digital technologies used by companies in the food and hospitality sector in Norway. I strive to understand why Norwegian companies, i.e. food producers, grocery chains, restaurants, and cafes (or technology adopters) adopt the technologies in the first place and what benefits and challenges they may encounter along with the adoption. Data inputs for this paper are gathered from semi-structured interviews with several technology adopters. Empirical insights show that the benefits include economic advantage by reducing the amount of waste and increased awareness among employees. However, there are at least several challenges concerning the adoption of digital technologies. Some adopters found that the digital technologies were too costly, incompatible with their internal (IT) systems, or mismatched economic models. Another challenge is employee awareness about food waste and related digital technologies. The paper sheds light on the multiple and complex challenges in adopting digital technologies for food waste prevention and reduction.
Forfattere
Ammar Shihan Philippe Barre Venera Copani Rajae Kallida Liv Østrem Giorgio Testa Mark R. Norton Jean-Paul Sampoux Florence VolaireSammendrag
1. The persistence of perennial herbaceous species is threatened by increasing aridity. However, summer dormancy is a strategy conferring superior survival to grasses adapted to hot and dry summers. The role of temperature on the induction of summer dormancy was investigated in the perennial grass Dactylis glomerata to analyse the potential expression of this strategy under warmer climates. 2. We tested seven populations of D. glomerata originating from Morocco to Norway across the same latitudinal gradient in a five-site experiment. One population of the highly summer-dormant grass Poa bulbosa was used as a reference. Plants were grown from autumn in pots under full irrigation for 1 year mostly under open-air shelters. Heading date (ear emergence preceding flowering) was recorded and foliage senescence was assessed from end of spring until autumn. The maximum plant senescence under summer irrigation indicated the level of dormancy expression. Summer dormancy onset, release, expression and duration were modelled as a function of climatic variables. 3. From north to south, the duration of summer dormancy of the Mediterranean populations of D. glomerata and P. bulbosa ranged from 0 to 122 days, and 79 to 200 days, respectively. P. bulbosa was always completely dormant, while dormancy expression of D. glomerata was positively correlated with the sum of temperatures from winter onset (R2 = 0.57) and with the mean of minimum temperatures in summer (R2 = 0.73). Dormancy onset, release and duration were also positively correlated with thermal time from winter onset, while the duration of summer dormancy was longer as maximum temperatures increased. Mapping the European regions with climates allowing the expression of summer dormancy in D. glomerata showed that the potentially inductive areas for this strategy may expand in parallel with increasing summer aridity under a future climate warming scenario. 4. Synthesis. The large phenotypic variability of the expression of summer dormancy in D. glomerata was driven by temperature, suggesting that this strategy may have a greater role in higher latitudes to increase plant survival over the predicted hotter and drier summers. Leveraging this strategy for the choice and selection of suitable populations could enhance future adaptation of major perennial grasses to climate change.
Forfattere
Miren del Río Hans Pretzsch Ricardo Ruiz-Peinado Hervé Jactel Lluis Coll Magnus Löf Jorge Aldea Christian Ammer Admir Avdagić Ignacio Barbeito Kamil Bielak Felipe Bravo Gediminas Brazaitis Jakub Cerny Catherine Collet Sonia Condés Lars Drössler Marek Fabrika Michael Heym Stig-Olof Holm Gro Hylen Aris Jansons Viktor Kurylyak Fabio Lombardi Bratislav Matović Marek Metslaid Renzo Motta Thomas Nord-Larsen Arne Nothdurft Jan den Ouden Maciej Pach Marta Pardos Charlotte Poeydebat Quentin Ponette Thomas Perot Ditlev Otto Juel Reventlow Roman Sitko Vit Sramek Mathias Steckel Miroslav Svoboda Kris Verheyen Sonja Vospernik Barbara Wolff Tzvetan Zlatanov Andrés Bravo-OviedoSammendrag
The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies.
Forfattere
Ritter Atoundem Guimapi Saliou Niassy Bester Tawona Mudereri Elfatih M. Abdel-Rahman Ghislain T. Tepa-Yotto Sevgan Subramanian Samira A. Mohamed Karl Thunes Emily Kimathi Komi Mensah Agboka Manuele Tamò Jean Claude Rwaburindi Buyung Hadi Maged Elkahky May-Guri Sæthre Yeneneh Belayneh Sunday Ekesi Segenet Kelemu Henri E. Z. TonnangSammendrag
After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS).
Forfattere
Pekka E. Kauppi Gustav Stål Lina Arnesson-Ceder Isabella Hallberg Sramek Hans Fredrik Hoen Arvid Svensson Iddo K. Wernick Peter Högberg Tomas Lundmark Annika NordinSammendrag
Planting new forests has received scientific and political attention as a measure to mitigate climate change. Large, new forests have been planted in places like China and Ethiopia and, over time, a billion hectares could become available globally for planting new forests. Sustainable management of forests, which are available to wood production, has received less attention despite these forests covering at least two billion hectares globally. Better management of existing forests would improve forest growth and help mitigate climate change by increasing the forest carbon (C) stock, by storing C in forest products, and by generating wood-based materials substituting fossil C based materials or other CO2-emission-intensive materials. Some published research assumes a trade-off between the timber harvested from existing forests and the stock of C in those forest ecosystems, asserting that both cannot increase simultaneously. We tested this assumption using the uniquely detailed forest inventory data available from Finland, Norway and Sweden, hereafter denoted northern Europe. We focused on the period 1960 – 2017, that saw little change in the total area covered by forests in northern Europe. At the start of the period, rotational forestry practices began to diffuse, eventually replacing selective felling management systems as the most common management practice. Looking at data over the period we find that despite significant increases in timber and pulp wood harvests, the growth of the forest C stock accelerated. Over the study period, the C stock of the forest ecosystems in northern Europe increased by nearly 70%, while annual timber harvests increased at the about 40% over the same period. This increase in the forest C stock was close to on par with the CO2-emissions from the region (other greenhouse gases not included). Our results suggest that the important effects of management on forest growth allows the forest C stock and timber harvests to increase simultaneously. The development in northern Europe raises the question of how better forest management can improve forest growth elsewhere around the globe while at the same time protecting biodiversity and preserving landscapes.
Forfattere
Ari Hietala Ahto Agan Nina Elisabeth Nagy Isabella Børja Volkmar Timmermann Rein Drenkhan Halvor SolheimSammendrag
The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1–2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.
Forfattere
Milica Fotirić Akšić Dragana Dabić Zagorac Uroš Gašić Tomislav Tosti Maja Natić Mekjell MelandSammendrag
The aim of this study was to compare total phenolic content (TPC), radical-scavenging activity (RSA), total anthocyanin content (TAC), sugar and polyphenolic profiles of two apple cultivars (‘Discovery’ and ‘Red Aroma Orelind’) from organic and integrated production systems in climatic conditions of Western Norway. Sixteen sugars and four sugar alcohols and 19 polyphenols were found in the peel, but less polyphenols were detected in the pulp. The peel of both apples and in both production systems had significantly higher TPC and RSA than the pulp. The peel from integrated apples had higher TPC than the peel from organic apples, while organic apples had higher TAC than the integrated. Sucrose and glucose levels were higher in organic apples; fructose was cultivar dependent while minor sugars were higher in integrated fruits. The most abundant polyphenolic compound in the peel of the tested cultivars was quercetin 3-O-galactoside, while chlorogenic acid was most abundant in the pulp. Regarding polyphenols, phloretin, phloridzin, protocatechuic acid, baicalein and naringenin were higher in organic apple, while quercetin 3-O-galactoside, kaempferol 3-O-glucoside, chlorogenic acid and syringic acid was higher in integrated fruits. In conclusion, organic ‘Discovery’ and integrated ‘Red Aroma Orelind’ had higher bioavailability of health related compounds from the peel and the pulp.