Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

The presentation covers some of the work we are doing on two important sources of plastics and microplastics in Norwegian agricultural soils. The first is through soil amendment with biogas digestate. The second is through plastic mulching with biodegradable plastic film.

Sammendrag

In a young Norway spruce stand (planted in 2012) at Hoxmark, Southeast Norway, Net Ecosystem Exchange (NEE) was measured using Eddy Covariance. The data were carefully processed with time-dependent stand parameters (i.e. canopy height), a detailed footprint analysis and calculated at 30 min temporal resolution. Photosynthetic Active Radiation (PAR) as the primary driver for carbon uptake was also available at the site. Despite its young age, the plantation already acted as a net carbon sink according to the annual NEE budget, e.g. by ca. 300 g C m-2 in 2019. However, the response of the system depended strongly on hydrometeorological conditions. We demonstrate this by investigating the relationship between NEE and PAR for this system in a temporally local fashion (30 days moving windows), using a Michaelis-Menten approach involving three parameters. Although the regression captured up to ca. 80% of the variance, the parameter estimates differed substantially throughout the season, and were contrasting between the very dry year 2018 and the close to normal year 2019. Comparison with other EC-equipped sites in a future study will clarify whether this variable sensitivity is due to the young age or is a pattern pertaining also to mature spruce stands. https://doi.org/10.5194/egusphere-egu21-5028

Sammendrag

Forests have climate change mitigation potential since they sequester carbon. However, their carbon sink strength might depend on management. As a result of the balance between CO2 uptake and emission, forest net ecosystem exchange (NEE) reaches optimal values (maximum sink strength) at young stand ages, followed by a gradual NEE decline over many years. Traditionally, this peak of NEE is believed to be concurrent with the peak of primary production (e.g., gross primary production, GPP); however, in theory, this concurrence may potentially vary depending on tree species, site conditions and the patterns of ecosystem respiration (Reco). In this study, we used eddy-covariance (EC)-based CO2 flux measurements from 8 forest sites that are dominated by Norway spruce (Picea abies L.) and built machine learning models to find the optimal age of ecosystem productivity and that of CO2 sequestration. We found that the net CO2 uptake of Norway spruce forests peaked at ages of 30-40 yrs. Surprisingly, this NEE peak did not overlap with the peak of GPP, which appeared later at ages of 60-90 yrs. The mismatch between NEE and GPP was a result of the Reco increase that lagged behind the GPP increase associated with the tree growth at early age. Moreover, we also found that newly planted Norway spruce stands had a high probability (up to 90%) of being a C source in the first year, while, at an age as young as 5 yrs, they were likely to be a sink already. Further, using common climate change scenarios, our model results suggest that net CO2 uptake of Norway spruce forests will increase under the future climate with young stands in the high latitude areas being more beneficial. Overall, the results suggest that forest management practices should consider NEE and forest productivity separately and harvests should be performed only after the optimal ages of both the CO2 sequestration and productivity to gain full ecological and economic benefits. How to cite: Zhao, J., Lange, H., and Meissner, H.: Mismatch between the optimal ages for ecosystem productivity and net CO2 sequestration in Norway spruce forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4257, https://doi.org/10.5194/egusphere-egu21-4257, 2021.

Sammendrag

Søkelyset på utfordringene med plast og forsøplingsproblematikken har sammen med nye krav og forbud fra EU, ført til at mange produsenter ønsker seg gode alternativer til fossil plast. Et resultat av dette er at stadig flere velger bionedbrytbar plast i emballasje eller som alternativ i landbruket. Men hva skjer med den bionedbrytbare plasten? Enten ute på jordet eller i kommunale biokomposteringsanlegg. Blir den brutt ned? Det er noe Grønt Punkt Norge ønsker bedre svar på. Derfor har vi vært initiativtaker til et 3-årig prosjekt hvor NIBIO skal forske på dette. Prosjektet er nå halvveis og onsdag 24. mars vil forsker Claire Coutris fra NIBIO dele noen foreløpige resultater.