Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

A negative impact of multiple anthropogenic stressors on surface waters can be observed worldwide threatening fresh- and marine water ecosystem functioning, integrity and services. Water pollution may result from point or diffuse sources. An important difference between a point and a diffuse source is that a point source may be collected, treated or controlled. Agricultural activities related to crop production are considered as diffuse sources and are among the main contributors of nutrient loads to open water courses, being to a large degree responsible for the eutrophication of inland and coastal waters. Knowledge of hydrological and biogeochemical processes are needed for climate adaptive water management as well as for introducing mitigation measures aiming to improve surface water quality. Mathematical models have the potential to estimate changes in hydrological and biogeochemical processes under changing climatic or land use conditions. These models, indeed, need careful calibration and testing before being applied in decision making. The aim of this study was to evaluate the efficiency of various water protective adaptation strategies and mitigation measures in reducing the soil particle and nutrient losses towards surface water courses from agricultural dominated catchments. We applied the INCA-N and INCA-P models to a well-studied Norwegian watershed belonging to the Norwegian Agricultural Environmental Monitoring Program. Available measurements on water discharge, TN and TP concentration of stream water and local expert knowledge were used as reference data on land-use specific sediment, N and P losses. The calibration and the validation of both the models was successful; the Nash-Sutcliffe statistics indicated good agreement between the measured and simulated discharge and nutrient loads data. Further, we created a scenario matrix consisting of land use and soil management scenarios combined with different climate change scenarios. Our results indicate that land use change can lead to more significant reduction in particle and nutrient losses than changes in agricultural practices. The most favourable scenario for freshwater ecosystems would be afforestation: changing half of the agricultural areas to forest would reduce sediment, total N and total P losses by approximately 44, 35 and 40%, respectively. Changes in agricultural practices could also improve the situation, especially by reducing areas with autumn tillage to a minimum. We concluded, that the implementation of realistic land use and soil management scenarios still would not lead to satisfactory reduction in freshwater pollution. Hence, mitigation measures, enhancing water and particle retention in the landscape – as sedimentation ponds, constructed wetlands etc. – are important in facing the upcoming pressures on water quality in the future.

2018

Til dokument

Sammendrag

Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case‐studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.

Til dokument

Sammendrag

The hydrological processes associated with vegetation and their effect on slope stability are complex and so difficult to quantify, especially because of their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field based research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation types, and none dedicated to marine clay soils (typically soil type for Norway). In order to fill this gap we established hydrological and mechanical monitoring of selected test plots within a stream bank, covered with different types of vegetation, typical for Norwegian agricultural areas (grass, shrubs and trees). The soil moisture, groundwater level and stream water level were continuously monitored. Additionally, soil porosity and shear strength were measured regularly. Observed hydrological trends and differences between three plots (grass, tree and shrub) were analysed and formed the input base for stream bank stability modeling. We did not find particular differences between the grass and shrub plot but we did observe a significantly lower soil moisture content, lower soil porosity and higher shear strength within the tree plot. All three plots were stable during the monitoring period, however modeling scenarios made it possible to analyse potential differences in stream bank stability under different vegetation cover depending on root reinforcement and slope angle.

Sammendrag

Mørdre nedbørfelt er en del av Program for jord- og vannovervåking i landbruket (JOVA) som rapporterer årlig om jordbruksdrift, avrenning og tap av partikler, næringsstoffer og plantevernmidler. I perioden fra 2010 til 2016 ble det observert de høye tap av fosfor i Mørdre-feltet. Denne rapporten presenterer en analyse av en lang tidsserie av observerte data for avrenning, suspendert sediment og fosfor tap som tar sikte på å undersøke årsakene til høye fosfortap samt eventuelt identifisere en permanent endring. Utfordringen er: (1) tidsavhengighet, (2) sammenkobling mellom prosessene i nedbørfelt og (3) nøyaktig informasjon om all aktiviteter i nedbørfeltet. Disse kan ikke identifiseres direkte fra gjeldende datasett. Forfattere identifiserte komplementære målinger og / eller tiltak som tar sikte på å undersøke og forstå vannets veier og transportprosesser for sediment og næringsstoffer i nedbørfeltet, og omfatter undersøkelser koblet til ekstreme hendelser.

Sammendrag

Klima- og miljødepartementet (KLD) har gitt NIBIO i oppdrag å sammenstille oppdaterte beregninger av kostnadseffektivitet av vannmiljøtiltak i jordbruket, spesielt de som inngår i Regionale Miljøprogram (RMP) og Spesielle miljøtiltak i landbruket (SMIL). KLD har dessuten ønsket en beskrivelse av muligheter for å gjøre en samfunnsøkonomisk analyse av nytten av vannmiljøtiltak og deres effekt på andre miljøtema. Denne rapporten omhandler disse to tema. Kostnadseffektivitet for jordarbeidingstiltak, vegetasjonssoner og fangdammer er utredet tidligere, både i 2010 og 2013 (Refsgaard m.fl). Det ble da laget oversikter for ulike regioner, produksjoner med spesiell vekt på fosfor og arealer med ulik erosjonsrisiko. Da både effekter og kostnader av tiltak hadde stor variasjon ble det utarbeidet en kalkulator for å beregne kostnadseffektivitet under ulike forhold (www.webgis.no/Peffekt)..............

Til dokument

Sammendrag

Only a few studies have quantified and measured ecosystem services (ES) specifically related to soil. To address this gap, we have developed and applied a methodology to assess changes in ecosystem services, based on measured or estimated soil property changes that were stimulated by soil management measures (e.g., mulching, terracing, no-till). We applied the ES assessment methodology in 16 case study sites across Europe representing a high diversity of soil threats and land use systems. Various prevention and remediation measures were trialled, and the changes in manageable soil and other natural capital properties were measured and quantified. An Excel tool facilitated data collection, calculation of changes in ecosystem services, and visualization of measured short-term changes and estimated long-term changes at plot level and for the wider area. With this methodology, we were able to successfully collect and compare data on the impact of land management on 15 different ecosystem services from 26 different measures. Overall, the results are positive in terms of the impacts of the trialled measures on ecosystem services, with 18 out of 26 measures having no decrease in any service at the plot level. Although methodological challenges remain, the ES assessment was shown to be a comprehensive evaluation of the impacts of the trialled measures, and also served as an input to a stakeholder valuation of ecosystem services at local and sub-national levels.