Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Cultivation of strawberries in greenhouses and polytunnels is increasing, and new sustainable growing media are needed to replace peat and coconut coir. This study investigated the effect of wood fiber and compost as growing media on hydroponically cultivated strawberries. Two experiments were conducted, where the everbearing cultivar ‘Murano’ was grown in mixtures of wood fiber and compost (Experiment 1) and the seasonal flowering cultivar ‘Malling Centenary’ was grown in mixtures of wood fiber and peat (Experiment 2). Additionally, in Experiment 2, the effect of adding start fertilizer was assessed. The yield potential of ‘Murano’ plants was maintained in all substrates compared to the coconut coir control. However, a mixture of 75% wood fiber and 25% compost produced the highest yield, suggesting that mixtures of nutritious materials with wood fiber may improve plant performance. The chemical composition of the berries was not affected by the substrate composition; however, berries from plants grown in the best performing blend had a lower firmness than those grown in coconut coir. ‘Malling Centenary’ plants produced higher yields in substrates enriched with start fertilizer. Generally, the productivity of ‘Malling Centenary’ plants was maintained in blends containing up to 75% of wood fiber mixture even without start fertilizer.

Til dokument

Sammendrag

To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.

Til dokument

Sammendrag

This study quantifies golf course pesticide risk in five regions across the US (Florida, East Texas, Northwest, Midwest, and Northeast) and three countries in Europe (UK, Denmark, and Norway) with the objective of determining how pesticide risk on golf courses varied as a function of climate, regulatory environment, and facility-level economic factors. The hazard quotient model was used to estimate acute pesticide risk to mammals specifically. Data from 68 golf courses are included in the study, with a minimum of at least five golf courses in each region. Though the dataset is small, it is representative of the population at confidence level of 75 % with a 15 % margin of error. Pesticide risk appeared to be similar across US regions with varied climates, and significantly lower in the UK, and lowest in Norway and Denmark. In the Southern US (East Texas and Florida), greens contribute most to total pesticide risk while in nearly all other regions fairways make the greatest contribution to overall pesticide risk. The relationship between facility-level economic factors such as maintenance budget was limited in most regions of the study, except in the Northern US (Midwest, Northwest, and Northeast) where maintenance and pesticide budget correlated to pesticide risk and use intensity. However, there was a strong relationship between regulatory environment and pesticide risk across all regions. Pesticide risk was significantly lower in Norway, Denmark, and the UK, where twenty or fewer active ingredients were available to golf course superintendents, than it was in US where depending on the state between 200 and 250 pesticide active ingredients were registered for use on golf courses.