Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Sammendrag
The availability of fresh vegetables grown in greenhouses under controlled conditions throughout the year has given rise to concerns about their impact on the environment. In high latitude countries such as Norway, greenhouse vegetable production requires large amounts of energy for heat and light, especially during the winter. The use of renewable energy such as hydroelectricity and its effect on the environment has not been well documented. Neither has the effect of different production strategies on the environment been studied to a large extent. We conducted a life cycle assessment (LCA) of greenhouse tomato production for mid-March to mid-October (seasonal production), 20th January to 20th November (extended seasonal) production, and year-round production including the processes from raw material extraction to farm gate. Three production seasons and six greenhouse designs were included, at one location in southwestern and one in northern Norway. The SimaPro software was used to calculate the environmental impact. Across the three production seasons, the lowest global warming (GW) potential (600 g CO2-eq per 1 kg tomatoes) was observed during year-round production in southwestern Norway for the design NDSFMLLED + LED, while the highest GW potential (3100 g CO2-eq per 1 kg tomatoes) was observed during seasonal production in northern Norway for the design NS. The choice of artificial lighting (HPS (High Pressure Sodium) or LED (Light Emitting Diodes)), heating system and the production season was found to have had a considerable effect on the environmental impact. Moreover, there was a significant reduction in most of the impact categories including GW potential, terrestrial acidification, and fossil resource scarcity from seasonal to year-round production. Overall, year-round production in southwestern Norway had the lowest environmental impact of the evaluated production types. Heating of the greenhouse using natural gas and electricity was the biggest contributor to most of the impact categories. The use of an electric heat pump and LED lights during extended seasonal and year-round production both decreased the environmental impact. However, while replacing natural gas with electricity resulted in decreased GW potential, it increased the ecotoxicity potential.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
2021
Forfattere
Michel Verheul Henk Maessen Martina Paponov Anush Panosyan Dmitry Kechasov Muhammad Naseer Ivan PaponovSammendrag
Studies of whole-plant responses of tomato to light environments are limited and cannot be extrapolated from observations of seedlings or short-term crops in growth chambers. Effects of artificial light sources like high pressure sodium (HPS) and light emitting diodes (LED) are mainly studied as supplement to sunlight in greenhouses. Since natural sunlight is almost neglectable in Norway during wintertime, we could study effects of different types of artificial light on crop growth and production in tomato. The goal of this experiment was to quantify the effects of artificial HPS top-light, installed at the top of the canopy, and LED inter-light, installed between plant rows, on fresh and dry matter production and fruit quality of greenhouse tomatoes under controlled and documented conditions. Our aim was to optimize yield under different light conditions, while avoiding an unfavourable source-sink balance. Tomato plants were grown under HPS top light with an installed capacity of 161, 242 and 272 W m−2 combined with LED inter-light with an installed capacity of 0, 60 or 120 W m−2. We used stem diameter as a trait to regulate air temperature in different light treatments in order to retain plant vigour. Results show that both HPS top light and LED inter-light increased tomato yield. However, the positive effect of supplemental LED inter-light decreased at higher amounts of HPS top light. Under the conditions in this experiment, with neglectable incoming solar radiation, an installed amount of 242 Watt m-2 HPS top light and a daily light integral (DLI) of 30 mol m-2 day-1 resulted in best light use efficiency (in gram fresh tomato per mol). Addition of LED inter-light to HPS top light reduced light use efficiency. Results show that winter production using artificial light in Norway is more energy efficient compared to production under sunlight in southern countries. Results can be used for modelling purposes.
Sammendrag
Potato contributes highly to the global food security. It is predicted that the production of this crop will be negatively affected by future climatic changes. Application of hydroponics for table potato production can mitigate crop loss in highly vulnerable regions. A preliminary small-scale case-study was performed to test theoretical perspectives of hydroponic production of table potatoes in wood fiber by comparing different fiber types and fertigation strategies. Potatoes were also grown in the field to obtain a reference control. Hydroponic production of potato in a stand-alone wood fiber resulted in ca. 200% higher yield, when compared to standard soil cultivation. However, the quality of the tubers was slightly reduced (lower dry matter content). Productivity of table potatoes was affected by the growing medium and fertigation strategy. Production of potatoes in wood fiber is possible and, in the future, might complement the conventional production systems, or even become an important alternative in locations where in-field cultivation is not possible. Nevertheless, the effect of wood fiber properties and the applied fertigation strategy on yield potential and tuber quality should be further studied. Optimization of these factors will be a topic of a following full-scale research.
Forfattere
Anne Linn Hykkerud Tomasz Leszek Woznicki Ewelina Wojciechowska Unni Myrheim Roos Anita SønstebySammendrag
Bærproduksjon i plasttunnel har blitt trukket frem som en løsning for økologisk bærdyrking. Et slikt produksjonssystem er relativt nytt i Norge, og det er behov for mer kunnskap for å optimalisere produksjonen. I perioden 2017-2019 har vi gjennom prosjektet “Økologisk tunnelbær og flytende næring”, finansiert av Kunnskapsutviklingsmidler for økologisk produksjon i NIBIO, hatt ulike forsøk ved forskningsstasjonene Holt og Apelsvoll for å øke kunnskapen om dyrkingstekniske utfordringer for økologisk bærproduksjon.
Forfattere
Anne Linn Hykkerud Inger Martinussen Ewelina Wojciechowska Unni Myrheim Roos Anita SønstebySammendrag
Det er ikke registrert sammendrag