Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.

Til dokument

Sammendrag

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5,6,7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.

Til dokument

Sammendrag

Background and terms of reference Farmed Atlantic salmon (Salmo salar) that escape into the wild could interbreed with native fish, posing a potential risk to the genetic diversity of wild Atlantic salmon populations. The Atlantic salmon in aquaculture are diploid, meaning the fish has two sets of chromosomes. To mitigate the genetic impact on wild populations, the concept of producing sterile triploid farmed Atlantic salmon has been suggested as a solution. However, it is important to ensure that the utilization of triploids in commercial farming aligns with the regulations set forth in the Norwegian Animal Welfare Act. The Norwegian Food Safety Authority (NFSA) requested the Norwegian Scientific Committee for Food and Environment (VKM) to do an assessment about health- and welfare consequences in triploid Atlantic salmon under commercial farming conditions, as compared to diploid counterparts. VKM was also requested to describe the underlying physiological mechanisms concerning consequences of triploidy as well as address potential measures to reduce the negative impacts on the health and welfare of the fish. Methods A working group consisting of members with expertise in salmonid biology, aquaculture systems, veterinary medicine, fish health and welfare, virology, bacteriology, parasitology, breeding and genetics has drafted this opinion. To answer the Terms of Reference as mandated by the NFSA, the authors addressed fish health and welfare as a unified concept in this report. Two external experts have reviewed and provided their opinion before it was assessed and approved by the VKM’s Panel on Animal Health and welfare. The literature used in this work was peer-reviewed studies retrieved from a search in four databases as well as non peer-reviewed reports. Selection of studies was conducted independently by two members in the working group and based on predefined inclusion and exclusion criteria. Conclusions Under commercial farming conditions, triploid Atlantic salmon are often found to have lower standards of health and welfare compared to diploids. For example, field and experimental studies have found triploids to be more prone to skeletal and heart deformities, and cataracts, while field studies suggest that under commercial farming conditions they cope less well with handling and are more susceptible to skin ulcers. However, research has indicated that some of the effects of triploidy can be mitigated through specialized diets or environmental adjustments. There is a noticeable tendency across farm studies and experimental trials for triploid salmon to be equal or larger in size at the end of freshwater phase, but equal or smaller in size at the end of the seawater phase. Most publications conclude that within what is considered the optimal temperature range of diploids, oxygen consumption rate, oxygen binding capacity, and aerobic swimming capacity do not significantly differ between triploid and diploid Atlantic salmon. However, findings from experimental trials suggest a lower optimal temperature range for triploids, and data consistent across studies indicate that triploids possess lower tolerance to hypoxia at elevated temperatures. Triploid Atlantic salmon are less robust to higher water temperatures than diploid, and have other nutritional needs than diploids, especially regarding phosphorus, and histidine. There are few studies on the susceptibility of triploid salmon to infectious agents and diseases. Field observations indicate that triploid fish are more susceptible to primary infectious salmon anaemia (ISA) outbreaks than diploids under commercial farming conditions at the level of the farm, and at cage level within farms that experience an ISA outbreak. A higher susceptibility to the ISA virus would potentially affect not only the health and welfare of the triploid fish at the farm with an outbreak but may potentially spread to other farms. .............

Til dokument

Sammendrag

Stacked event MON 89034 × 1507 × MIR162 × NK603 × DAS‐40278‐9 (EFSA‐GMO‐NL‐2018‐151) is a genetically modified maize developed via conventional breeding. MON 89034× 1507 × MIR162 × NK603 × DAS‐40278‐9 plants contain the transgenes cry1A.105, cry2Ab2, cry1F, Vip3Aa20, cp4 epsps, pat, aad-1 and the phosphomannose isomerase (PMI) used as a selectable marker in the production of MIR162. MON89034 x 1507 x MIR162 x NK603 x DAS-40278-9 maize provides distinct sources for insect resistance combined with three distinct modes of herbicide tolerance: 2,4-D, glufosinate, and glyphosate. The scientific documentation provided in the application for genetically modified maize is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event maize to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 89034 × 1507 × MIR162 × NK603 × DAS‐40278‐9 was not performed by the VKM GMO Panel.

Til dokument

Sammendrag

Event MIR162 is a genetically modified maize developed via Agrobacterium tumefaciens mediated transformation of maize embryos. MIR162 plants contain the transgenes vip3Aa20, a modified version of the native vip3Aa1 from Bacillus thuringiensis, and the pmi gene from Escherichia coli. Vip3Aa20 encodes the insecticidal Vip3Aa20-protein, conferring MIR162 with resistance to several species of lepidopteran (order of butterflies and moths) insect pests. Pmi encodes the enzyme phosphomannose isomerase (PMI) which catalyses the isomerization of mannose-6-phosphate to fructose-6-phosphate. PMI was used as a selectable marker during development of MIR162. The scientific documentation provided in the renewal application (EFSA-GMO-RX-025) for maize MIR162 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MIR162 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of maize event MIR162 was not performed by the VKM GMO Panel.

Sammendrag

The oilseed rape Ms8xRf3, developed by BASF Agricultural Solutions Seed US LLC, is a fertile hybrid tolerant to glufosinate-ammonium containing herbicides. The hybrid is derived through conventional breeding of the male sterile oilseed rape event Ms8 and the oilseed rape event Rf3, called the fertility restorer. Ms8 and Rf3 were produced by Agrobacterium tumefaciens mediated transformation of cells from a conventional oilseed cultivar. The dominant gene for male sterility in event Ms8 is barnase, and the dominant gene for fertility restoration in event Rf3 is barstar. The bar gene, conferring tolerance to glufosinateammonium, is found in both Ms8 and Rf3. The scientific documentation provided in the renewal application for the genetically modified oilseed rape events Ms8, Rf3 and Ms8 x Rf3 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in events Ms8, Rf3 and Ms8 x Rf3 to imply potential specific health or environmental risks in Norway, compared to EU-countries.

Til dokument

Sammendrag

European canker is one of the most devastating fungal diseases of apple in most temperate regions. The causal agent, Neonectria ditissima, infects trees through wounds in the bark forming cankers that girdle the stem and eventually cause tree death. Timely protection of the trees is challenged by stagnation of symptom expression after infections for a long period of time. The objective of this research is to use a novel TaqMan PCR assay to detect and quantify N. ditissima during the asymptomatic colonization of apple wood. Pruning wounds on branches of the cultivars Elstar and Gala were inoculated with N. ditissima and wood discs were sampled at 2–6, 10–14, and 30–34 mm distance from the inoculation site after 3 hours, 2 weeks, 4 weeks and 8 weeks for the detection and quantification of the pathogen. The TaqMan PCR assay detected N. ditissima in 51% of the inoculated apple tree samples. This was more sensitive than the culturing method detecting N. ditissima in 11% of the samples. An accumulation of N. ditissima DNA up to 34 mm distance from the inoculation site was observed without development of visible symptoms. To our knowledge this is the first time colonization of N. ditissima was detected and quantified in the absence of symptoms of European canker. The implications of this research are discussed.

Til dokument

Sammendrag

Utmarksbeitende dyr er utsatt for angrep fra fredet rovvilt. I oppdrag fra rovviltnemnda i region 6 Midt-Norge undersøker vi den mulige nytteverdien av droner i åpen kategori som forebyggende- og konfliktdempende tiltak (FKT). Utredningen er basert på informasjon fra intervjuer, faglitteratur og dronetestflygninger.Droner som FKT kan brukes under (1) tilsyn, (2) flytting av dyr fra rovdyrutsatte områder, (3) automatisk gjenkjenning og telling av dyr, (4) overvåkning av rovdyrutsatte områder, (5) kadaversøk, (6) søk av skadete eller skremte beitedyr og (7) sporing av rovdyr. Dronebruk i åpen kategori er delvis mulig for (1) – (3) så lenge dronen er innen synsrekkevidden. Slike operasjoner kan ikke skilles fra vanlig drift. Operasjoner under (4) – (7) må dekke større områder og må utføres i spesifikk kategori. Effektiviteten av slike droneoperasjoner er ukjent. Droner kan brukes i alle typer habitat ved å tilpasse sensorene for fjernmåling. Regelverket, signaldekning, vær- og lysforhold setter begrensninger. Dronesystemer i åpen kategori er lett, enkle å bruke, transportere og lade. Mer avanserte droner (<25 kg) er dyre og vanskelig å transportere og lade og brukes best i spesifikk kategori for mer varierte FKT-formål. I nær framtid kan droner f.eks. brukes til sporing av beite- og rovdyr, kadaversøk og skremming, samt innhenting av data fra elektroniske sporingsenheter på dyr. Til og med selvgående droner som rykker ut når en nødsituasjon oppstår er mulig. Effektiviteten bør testes under norske lys- og værforhold. I samsvar med en rask teknologiutvikling krever økt dronebruk i utmark økt oppmerksomhet omkring konsekvensene med hensyn til offentlig sikkerhet, personvern og ikke minst dyreliv.

Sammendrag

The maturity stage of carrot and the temperature strategy during storage are essential factors in maintaining storage quality during long-term storage. The aim of the study was to examine the effect of maturity and storage strategy on storage quality in different cultivars of carrot (Daucus carota subsp. sativus). Two cultivars, ‘Nominator’ and ‘Romance’, harvested at three different maturity levels were stored with different temperature strategies in small-scale experimental stores. The different maturity levels were obtained by different sowing dates. The study was conducted over 2 years and storage seasons in 2019-2020 and 2020-2021. The carrots were stored with three different temperature strategies with stable temperature at 0, 2 or 0°C interrupted with intervals of 2 weeks with 4°C in February and in March. After six-months storage we found that weight loss was higher (7.8%) after storage when the temperature was not stable during storage (fluctuations up to 4°C in February and March) than at stable temperatures at 0 or 2°C. The number of healthy roots after storage was highest in the most mature carrots (91%) while there were less healthy roots in the least mature roots (85%) (P<0.05). Diseases detected after storage were gray mold (Botrytis cinerea), liquorice rot (Mycocentrospora acerina), tip rot, crater rot (Fibularhizoctonia carotae), Fusarium rot (Fusarium spp.) and cavity spot (Pythium spp.). There was significantly more liquorice rot in Nominator (1.9%) than in Romance (0.6%). There was more tip rot in the least mature carrots (3.3%) compared to the other two maturity levels (1.3 and 1.5%).

Til dokument

Sammendrag

The aim was to explore the impact of temperature during seed development on yield performance and seed quality in faba bean when grown at cool temperatures representative for high latitude regions. Two varieties, an early and a medium late maturing, were grown in climate chambers with three temperature regimes (day/night temperatures of 14°C/12°C, 19°C/12°C, and 24°C/12°C) from onset of flowering to maturation. Yield components were recorded, and the accumulation of protein, starch, and low molecular weight carbohydrates including the raffinose family oligosaccharides was followed during the accumulation phase until physiological maturity. The lower temperature regimes strongly delayed pod and seed development compared with 24°C/12°C. Temperature affected the number of pods per plant for the upper node group. Plants grown at 19°C had the highest total dry seed weight compared with plants grown at 14°C and 24°C. Temperature per se did not influence the content of starch, protein, and low molecular weight carbohydrates, while their accumulation followed the moisture content in the seed, and thus the seed development stage. The content of raffinose family oligosaccharides increased sharply when the seed moisture dropped below 70% and leveled off at about 40% and 50% moisture for verbascose and stachyose, respectively, coinciding with physiological maturity. The results provide more knowledge about the seed maturation and accumulation in faba bean under low temperatures, important for cultivation under high latitude regions.