Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Forfattere
Mathias Amundsen Laura Jaakola Kjersti Aaby Inger Martinussen N. Kelanne S. Tuominen O. Laaksonen B. Yang Anne Linn HykkerudSammendrag
Lingonberries (Vaccinium vitis-idaea L.) from two locations, northern (69°N, 18°E) and southern (59°N, 10°E) Norway, were grown under controlled conditions in a phytotron at two temperatures (9 and 15 °C) to study the effects of the ripening temperature and origin on the chemical composition of the berries. The concentrations of phenolic compounds, sugars, and organic acids as well as the profile of volatile organic compounds (VOCs) were determined using chromatographic and mass spectrometric methods. Five anthocyanins, eleven flavonols, eight cinnamic acid derivatives, three flavan-3-ols, three sugars, three organic acids, and 77 VOCs were identified, of which 40 VOCs had not previously been reported in lingonberries. Berries from both locations, were found to have higher contents of anthocyanins and cinnamic acid derivatives when ripened at lower temperature (9 °C), compared to the higher temperature (15 °C). Lingonberries of northern origin had a different VOC profile and higher contents of anthocyanins and organic acids than berries originating from the south. Lingonberries from the northern location also had higher proportions of cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside than lingonberries from the southern location. The results show that the composition of lingonberries is influenced by both the environment and the origin of the plants, with phenolic compounds mainly influenced by the growth temperature and VOCs mainly influenced by plant origin.
Sammendrag
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4–67.6 megabases genomes in 178–204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Forfattere
P.W. Barnes T.M. Robson R.G. Zepp J.F. Bornman M.A.K. Jansen R. Ossola Q.-W. Wang S.A. Robinson Bente Føreid A.R. Klekociuk J. Martinez-Abaigar W.-C. Hou R. Mackenzie N.D. PaulSammendrag
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Sammendrag
Aim Current global warming is driving changes in biological assemblages by increasing the number of thermophilic species while reducing the number of cold-adapted species, leading to thermophilization of these assemblages. However, there is increasing evidence that thermophilization might not keep pace with global warming, resulting in thermal lags. Here, we quantify the magnitude of thermal lags of plant assemblages in Norway during the last century and assess how their spatio-temporal variation is related to variables associated with temperature-change velocity, topographic heterogeneity, and habitat type. Location Norway. Time period 1905–2007. Major taxa studied Vascular plants. Methods We inferred floristic temperature from 16,351 plant assemblages and calculated the floristic temperature anomaly (difference between floristic temperature and baseline temperature) and thermal lag index (difference between reconstructed floristic temperature and observed climatic temperature) from 1905 until 2007. Using generalized least squares models, we analysed how the variation in observed lags since 1980 is related to temperature-change velocity (measured as magnitude, rate of temperature change, and distance to past analogous thermal conditions), topographic heterogeneity, and habitat type (forest versus non-forest), after accounting for the baseline temperature. Results The floristic temperature anomaly increases overall during the study period. However, thermophilization falls behind temperature change, causing a constantly increasing lag for the same period. The thermal lag index increases most strongly in the period after 1980, when it is best explained by variables related to temperature-change velocity. We also find a higher lag in non-forested areas, while no relationship is detected between the degree of thermal lag and fine-scale topographic heterogeneity. Main conclusions The thermal lag of plant assemblages has increased as global warming outpaces thermophilization responses. The current lag is associated with different dimensions of temperature-change velocity at a broad landscape scale, suggesting specifically that limited migration is an important contributor to the observed lags.
Sammendrag
The effect of steam thermotherapy on Botrytis spp. populations in strawberry transplants was evaluated. Tray plants rooted in 0.2 L peat plugs of seasonal flowering cvs. Falco, Sonsation, and Soprano, and everbearing cvs. Favori and Murano were pre-treated with steam at 37 °C for 1 h, followed by 1 h at ambient temperature and air humidity, and then 2 or 4 h steam treatment at 44 °C. Except for one cultivar with a slight reduction in yield, there were no negative effects on plant performance. Compared to untreated transplants, mean incidence of Botrytis on the five cultivars was reduced by 43 and 86% with the 2 and 4 h treatments, respectively. Within cultivars the reduction was significant in 2 and 3 experiments following the 2 and 4 h treatments, respectively. Sclerotia from four different isolates of Botrytis were subjected to treatment including 4 h of steam thermotherapy and subsequently tested for viability. Following 14 days of incubation, 90 to 100% (mean 97%) of treated sclerotia failed to produce mycelial growth compared with untreated sclerotia, which all germinated and produced mycelia. Botrytis isolates recovered from both treated and untreated strawberry transplants were tested for resistance to seven fungicides, including boscalid, fenhexamid, fludioxonil, fluopyram, pyraclostrobin, pyrimethanil and thiophanate-methyl. Multiple fungicide resistance was common; 35.5% of isolates were resistant to fungicides from at least three FRAC groups. Results indicate that steam thermotherapy treatment strongly reduces populations of Botrytis spp., including fungicide-resistant strains, in strawberry transplants with negligible negative impacts on the transplants.
Sammendrag
The European spruce bark beetle Ips typographus and the North American spruce beetle Dendroctonus rufipennis cause high mortality of spruces on their native continents. Both species have been inadvertently transported beyond their native ranges. With similar climates and the presence of congeneric spruce hosts in Europe and North America, there is a risk that one or both bark beetle species become established into the non-native continent. There are many challenges that an introduced population of bark beetles would face, but an important prerequisite for establishment is the presence of suitable host trees. We tested the suitability of non-native versus native hosts by exposing cut bolts of Norway spruce (Picea abies), black spruce (Picea mariana) and white spruce (Picea glauca) to beetle attacks in the field in Norway and Canada. We quantified attack density, brood density and reproductive success of I. typographus and D. rufipennis in the three host species. We found that I. typographus attacked white and black spruce at comparable densities to its native host, Norway spruce, and with similar reproductive success in all three host species. In contrast, D. rufipennis strongly preferred to attack white spruce (a native host) but performed better in the novel Norway spruce host than it did in black spruce, a suboptimal native host. Our results suggest that I. typographus will find abundant and highly suitable hosts in North America, while D. rufipennis in Europe may experience reduced reproductive success in Norway spruce.
Sammendrag
Up-to-date and reliable information on land cover and land use status is important in many aspects of human activities. Knowledge about the reference dataset, its coverage, nomenclature, thematic and geometric accuracy, spatial resolution is crucial for appropriate selection of reference samples used in the classification process. In this study, we examined the impact of the selection and pre-processing of reference samples for the classification accuracy. The classification based on Random Forest algorithm was performed using firstly the automatically selected reference samples derived directly from the national databases, and secondly using the pre-processed and verified reference samples. The verification procedures involved the iterative analysis of histogram of spectral features derived from the Sentinel-2 data for individual land cover classes. The verification of the reference samples improved the accuracy of delineation of all land cover classes. The highest improvement was achieved for the woodland broadleaved and non- and sparce vegetation classes, with the overall accuracy increasing from 51% to 73%, and from 33% to 74%, respectively. The second objective of this study was to derive the best possible land cover classification over the mountain area in Norway, therefore we examined whether the use of the Digital Elevation Model (DEM) can improve the classification results. Classifications were carried out based on Sentinel-2 data and a combination of Sentinel-2 and DEM. Using the DEM the accuracy for nine out of ten land cover classes was improved. The highest improvement was achieved for classes located at higher altitudes: low vegetation and non- and sparse vegetation.
Forfattere
Abirami Ramu Ganesan Philipp Hoellrigl Hannah Mayr Demian Martini Loesch Noemi Tocci Elena Venir Lorenza ConternoSammendrag
This study aimed to evaluate the rheological properties of doughs with 50% brewers’ spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G′ > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G′, G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.
Sammendrag
Livestock husbandry has raised enormous environmental concerns around the world, including water quality issues. Yet there is a need to document long-term water quality trends in livestock-intensive regions and reveal the drivers for the trends based on detailed catchment monitoring. Here, we assessed the concentration and load trends of dissolved reactive phosphorus (DRP) in streamwater of a livestock-intensive catchment in southwestern Norway, based on continuous flow measurements and flow-proportional composite water sampling. Precipitation and catchment-level soil P balance were monitored to examine the drivers. At the field level, moreover, the relationship between soil P balance and soil test P (measured using the ammonium lactate extraction method, P-AL) was assessed. Results showed that on average of 20 years 95 % of the P was applied to the catchment during March–August, when 40 % of annual precipitation and 25 % of annual discharge occurred. The low runoff helped reduce P loss following P applications. However, flow-weighted annual mean DRP concentration significantly increased with increasingly cumulative soil P surplus (R2 = 0.55, p = 0.0002). With a mean annual P surplus of 8.8 kg ha−1, the annual mean DRP concentration (range: 49–140 μg L−1; mean: 80 μg L−1) and annual DRP load (range: 0.35–1.46 kg ha−1; mean: 0.65 kg ha−1) significantly increased over the 20-year monitoring period (p = 0.001 and 0.0003, respectively). At the field level, P-AL concentrations were positively correlated with soil P balances (R2 = 0.48, p < 0.0001), confirming the long-term impact of P balances on the risks of P loss. The study highlights the predominant role of long-term P balances in affecting DRP loss in livestock-intensive regions through the effect on soil test P.
Sammendrag
Elymus repens is a problematic perennial weed in annual crops, grasslands and leys. Rhizome fragmentation by vertical disking can potentially reduce E. repens abundance with minimal tillage, but data are lacking on its efficiency in forage production. In a two-year study (2017–2018, 2018–2019) conducted in two forage grass-clover leys that were mostly weed-free except for large E. repens populations, this study examined effects on forage yield, botanical composition, and E. repens rhizome biomass of rhizome fragmentation at significant growth initiation in spring (early rhizome fragmentation, ERF) and/or when conditions allowed after the first forage cut (late rhizome fragmentation, LRF). Cold, wet springs and hard, dry soil in summer delayed treatment in both treatment years, to late spring (ERF) and late summer/early autumn (LRF). In the treatment year, ERF reduced first-cut forage yield by 44% compared with no rhizome fragmentation, while LRF decreased second- and third-cut yield by 24% and 53%, respectively. In the year after treatment, ERF increased total forage yield by on average 10%, while LRF had no effect. Over both years, combined forage yield was reduced by 11% by ERF and 4% by LRF. Both treatments reduced E. repens rhizome biomass, but inconsistently (ERF by 25% in one year only, LRF by 24% at one of two sites). ERF reduced E. repens incidence in forage by 10% in the treatment year, but had no effect in the following year. Thus, rhizome fragmentation by vertical disking can reduce E. repens abundance in grass-clover leys, but the effect is inconsistent and forage yield can be impaired, especially in swards with much E. repens. Moreover, disking is hampered by hard, dry soil conditions.