Paul McLean
Forsker
Sammendrag
Key message This study compares the measured radial variation in wood stiffness, strength, and density of noble fir, Norway spruce, western hemlock, and western red cedar by developing mixed-effects models for each property using age as the explanatory variable. These models could be used to simulate the effect of rotation length and species choice on sawn wood properties. Context Timber production in Great Britain relies primarily on Sitka spruce. The use of multiple species is desirable to mitigate against biotic and abiotic risks posed to a single species. When considering alternative species, quantifying and modeling radial variation in wood properties is important to determine the potential for sawn timber production at a given rotation length. Aims To build empirical models for the radial variation in wood properties that can account for species. Methods Clear-wood samples were produced along radial transects in trees from four conifer species: Abies procera Rehder, Picea abies (L.) Karst, Tsuga heterophylla (Raf.) Sarg., Thuja plicata Donn. ex D.Don. Modulus of Elasticity, Modulus of Rupture, and density were measured on each species according to established standards. Mixed-effects models were built using ring numbers from the pith and species as explanatory variables. Results The same model forms could be used across the four species. Nonlinear models were developed for the Modulus of Elasticity and density. For the Modulus of Rupture, a linear model was most appropriate. The effect of species in the models was significant. Conclusion At similar rotation lengths, noble fir, Norway spruce, and western hemlock can produce timber with comparable properties to Sitka spruce. Overall, western red cedar would have worse properties for structural use. Keywords MOE, MOR, Radial variation, Tree growth, Alternative species
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Divisjon for skog og utmark
Lukkede hogster: Konsekvenser for produksjon, økonomi og biomangfold
Hovedmålet til prosjektet er å bygge kunnskap og kompetanse om hvordan en omlegging av norsk skogbruk, fra flatehogst til mer bruk av lukkede hogster, vil påvirke produksjon, økonomi og biologisk mangfold.
Divisjon for miljø og naturressurser
Precilience: Precision climate resilience for agriculture and forestry sectors in the European boreal regions
Precilience will develop precision solutions with farmers, foresters, landowners, and other actors to increase climate resilience in the boreal regions of Denmark, Estonia, Finland, Norway and Sweden.
Divisjon for skog og utmark
SFI SmartForest: Bringing Industry 4.0 to the Norwegian forest sector
SmartForest will position the Norwegian forest sector at the forefront of digitalization resulting in large efficiency gains in the forest sector, increased production, reduced environmental impacts, and significant climate benefits. SmartForest will result in a series of innovations and be the catalyst for an internationally competitive forest-tech sector in Norway. The fundamental components for achieving this are in place; a unified and committed forest sector, a leading R&D environment, and a series of progressive data and technology companies.