Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Forfattere
Eva Narten HøbergSammendrag
Det er ikke registrert sammendrag
Forfattere
Narta ElshaniSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Marita Bjørnvik Overmo Fulvia Tambone Marta Dell'Orto Fabrizio Adani Corinne Andreola Salman Nisar Josué González-Camejo Bente FøreidSammendrag
Det er ikke registrert sammendrag
Forfattere
Håvard Kauserud Tor Arne Justad Yngvild Vindenes Ine-Susanne Hopland Methlie Jørn Henrik Sønstebø Inger Skrede Sundy MauriceSammendrag
Wood-decay fungi are adapted to growth under different climate conditions and on various host tree species, but little is known about intraspecific variation in growth, substrate specificity and decay rates under different climatic conditions. Such knowledge is relevant to understand how wood-decay fungi will respond to climate change. Here, we investigate whether populations of the widespread brown-rot fungus Fomitopsis pinicola grow at different rates under different temperatures and water availabilities and whether the decay rate of the two wood substrates, Alnus incana and Picea abies, differs across populations. We isolated 72 cultures from fruit bodies collected in nine geographic localities across Norway, representing different climate conditions and substrates. We conducted in vitro growth experiments to assess the level of intraspecific phenotypic variability in temperature-dependent growth. All populations showed a strong but similar response in mycelial growth rates to different temperatures and water potentials. There were no consistent differences between populations in growth rates across temperatures, but larger variation between populations at the higher temperatures. Similarly, we observed no significant differences in wood decay rates across the nine populations and no signs of substrate specific adaptation to P. abies and A. incana. Our results indicate that local adaptation to different climates or substrates, as revealed by in vitro growth experiments, has to a limited extent, taken place during the few thousand years Fomitopsis pinicola has been present in this area.
Forfattere
Marie Vestergaard Henriksen Annette Bär Michael P. D. Garratt Anders Nielsen Line JohansenSammendrag
Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant–bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes. We investigate how these landscape connecting species, and their interactions, persist in their proposed supporting habitat, road verges, across a landscape with high human impact. We identify 11 plant taxa and nine bee species that connect semi-natural grassland patches. We find the beta diversity of these connector species to be low across road verges, indicating a poor contribution of these habitats to the landscape-scale diversity in semi-natural grasslands. We also find a significant influence of the surrounding landscape on the beta diversity of connector species and their interactions with implications for landscape-scale management. Conservation actions targeted toward species with key functional roles as connectors of fragmented ecosystems can provide cost-effective management of the diversity and functioning of threatened ecosystems.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Paul Eric Aspholm Simo Maduna Juho Vuolteenaho Cornelya Klutsch Hallvard Jensen Ida Marie Bardalen Fløystad Ingrid Helle Søvik Ane-Sofie Bednarczyk Hansen Runar Kjær David Kniha Helen Jewell Josefine Bergs Snorre HagenSammendrag
Det er ikke registrert sammendrag
Forfattere
Andrea Ponzecchi Gry Alfredsen Maria Fredriksson Emil Engelund Thybring Lisbeth ThygensenSammendrag
Acetylation is a commercialised chemical wood modification technology that increases the durability of wood against microbial attack. However, the details of how acetylation protects the wood structure from fungal degradation are still unclear. In this study, we tested the hypothesis that the resistance against microbial attack depends on the localisation of acetylation within the cell wall. The methodology involved two types of acetylation (uniform and lumen interface modification), which were analysed by lab-scale degradation with Rhodonia placenta, chitin quantification, infrared spectroscopy, and Raman microspectroscopy. The location of the acetylation did not affect overall mass loss during degradation experiments. Instead, the mass loss was related to the intensity of the treatment. However, chemical imaging of the interface acetylated specimens showed that degradation primarily took place in cell wall regions that were less acetylated. It was also observed that the fungus required more fungal biomass (i.e., fungal mycelia) to degrade acetylated wood than untreated wood. Based on dimensions and comparison to a reference spectrum, several cross-sections of hyphae located within lumina were discovered in the Raman images. These hyphae showed presence of chitin, water and chelated metals within their walls, and could be separated into an inner and an outer part based on their chemistry as seen in the spectra. The outer part was distinguished by a relatively higher amount of water and less chelated iron than the inner part.
Forfattere
Johan Asplund Jenni Nordén O. Janne Kjønaas Rieke Lo Madsen Lisa Fagerli Lunde Tone Birkemoe Eivind Kverme Ronold Milda Norkute Ulrika Jansson Damian P. Karlsen Anne Sverdrup-Thygeson Inger Skrede Ine-Susanne Hopland Methlie Sundy Maurice Ulrik Geiran Botten Regine Jusnes Krok Håvard Kauserud Line NybakkenSammendrag
Det er ikke registrert sammendrag