Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Habtamu AlemSammendrag
Det er ikke registrert sammendrag
Forfattere
Camille S. Delavaux Thomas W. Crowther Constantin M. Zohner Niamh M. Robmann Thomas Lauber Johan van den Hoogen Sara Kuebbing Jingjing Liang Sergio de-Miguel Gert-Jan Nabuurs Peter B. Reich Meinrad Abegg Yves C. Adou Yao Giorgio Alberti Angelica M. Almeyda Zambrano Braulio Vilchez Alvarado Esteban Alvarez-Dávila Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernandéz Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo A. Aymard Timothy R. Baker Radomir Bałazy Olaf Banki Jorcely G. Barroso Meredith L. Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Roel Brienen Eben N. Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo G. César Goran Cesljar Robin Chazdon Han Y. H. Chen Chelsea Chisholm Hyunkook Cho Emil Cienciala Connie Clark David Clark Gabriel D. Colletta David A. Coomes Fernando Cornejo Valverde José J. Corral-Rivas Philip M. Crim Jonathan R. Cumming Selvadurai Dayanandan André L. de Gasper Mathieu Decuyper Géraldine Derroire Ben DeVries Ilija Djordjevic Jiri Dolezal Aurélie Dourdain Nestor Laurier Engone Obiang Brian J. Enquist Teresa J. Eyre Adandé Belarmain Fandohan Tom M. Fayle Ted R. Feldpausch Leandro V. Ferreira Markus Fischer Christine Fletcher Lorenzo Frizzera Javier G. P. Gamarra Damiano Gianelle Henry B. Glick David J. Harris Andrew Hector Andreas Hemp Geerten Hengeveld Bruno Hérault John L. Herbohn Martin Herold Annika Hillers Eurídice N. Honorio Coronado Cang Hui Thomas T. Ibanez Iêda Amaral Nobuo Imai Andrzej M. Jagodziński Bogdan Jaroszewicz Vivian Kvist Johannsen Carlos A. Joly Tommaso Jucker Ilbin Jung Viktor Karminov Kuswata Kartawinata Elizabeth Kearsley David Kenfack Deborah K. Kennard Sebastian Kepfer-Rojas Gunnar Keppel Mohammed Latif Khan Timothy J. Killeen Hyun Seok Kim Kanehiro Kitayama Michael Köhl Henn Korjus Florian Kraxner Diana Laarmann Mait Lang Simon L. Lewis Huicui Lu Natalia V. Lukina Brian S. Maitner Yadvinder Malhi Eric Marcon Beatriz Schwantes Marimon Ben Hur Marimon-Junior Andrew R. Marshall Emanuel H. Martin Olga Martynenko Jorge A. Meave Omar Melo-Cruz Casimiro Mendoza Cory Merow Abel Monteagudo Mendoza Vanessa S. Moreno Sharif A. Mukul Philip Mundhenk María Guadalupe Nava-Miranda David Neill Victor J. Neldner Radovan V. Nevenic Michael R. Ngugi Pascal A. Niklaus Jacek Oleksyn Petr Ontikov Edgar Ortiz-Malavasi Yude Pan Alain Paquette Alexander Parada-Gutierrez Elena I. Parfenova Minjee Park Marc Parren Narayanaswamy Parthasarathy Pablo L. Peri Sebastian Pfautsch Oliver L. Phillips Nicolas Picard Maria Teresa T. F. Piedade Daniel Piotto Nigel C. A. Pitman Irina Polo Lourens Poorter Axel Dalberg Poulsen Hans Pretzsch Freddy Ramirez Arevalo Zorayda Restrepo-Correa Mirco Rodeghiero Samir G. Rolim Anand Roopsind Francesco Rovero Ervan Rutishauser Purabi Saikia Christian Salas-Eljatib Philippe Saner Peter Schall Dmitry Schepaschenko Michael Scherer-Lorenzen Bernhard Schmid Jochen Schöngart Eric B. Searle Vladimír Seben Josep M. Serra-Diaz Douglas Sheil Anatoly Z. Shvidenko Javier E. Silva-Espejo Marcos Silveira James Singh Plinio Sist Ferry Slik Bonaventure Sonké Alexandre F. Souza Stanislaw Miscicki Krzysztof J. Stereńczak Jens-Christian Svenning Miroslav Svoboda Ben Swanepoel Natalia Targhetta Nadja Tchebakova Hans ter Steege Raquel Thomas Elena Tikhonova Peter M. Umunay Vladimir A. Usoltsev Renato Valencia Fernando Valladares Fons van der Plas Tran Van Do Michael E. van Nuland Rodolfo M. Vasquez Hans Verbeeck Helder Viana Alexander C. Vibrans Simone Vieira Klaus von Gadow Hua-Feng Wang James V. Watson Gijsbert D. A. Werner Susan K. Wiser Florian Wittmann Hannsjoerg Woell Verginia Wortel Roderik Zagt Tomasz Zawiła-Niedźwiecki Chunyu Zhang Xiuhai Zhao Mo Zhou Zhi-Xin Zhu Irie C. Zo-Bi Daniel S. MaynardSammendrag
Det er ikke registrert sammendrag
Forfattere
Erlend Sørmo Katinka Muri Krahn Gudny Øyre Flatabø Thomas Hartnik Hans Peter Heinrich Arp Gerard CornelissenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Nutrient uptake and transport depend on the root system of a tree. Various apple rootstock genotypes may interact fruit tree nutrition. In 2017, two multi-location apple rootstock trials were established at 16 sites in 12 European countries. The evaluations are performed by members of the EUFRIN (European Fruit Research Institute Network) Apple & Pear Variety & Rootstock Testing Working Group. Following rootstocks are included in the tests: G.11, G.41, G.202 and G.935 (US), EM_01, EM_02, EM_03, EM_04, EM_05 and EM_06 (UK), 62-396-B10® (Russia), P 67 (Poland), NZ-A, NZ-B, NZ-C and NZ-D (New Zealand) and Cepiland-Pajam®2 as control. The effect of rootstocks on the mineral content of leaf and fruit was studied at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2019-2020. The leaf and fruit mineral concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and leaf mineral content of copper (Cu), zinc (Zn), iron (Fe), manganese (Mn) and boron (B) were measured. Significant rootstock effect was established on leaf P, Mg, Zn, Mn, B, and fruit Ca and Mg content. Rootstocks EM_01 and G.41 were the most efficient in leaf mineral uptake, while G.935 had the lowest content of all leaf macro nutrients. Rootstocks EM_06 and P 67 were the most efficient in fruit mineral uptake, while EM_02 had the lowest content of three nutrients. Current research reveals differences among rootstocks and their capacity to absorb separate minerals and enables creation of rootstock specific nutrition management.
Forfattere
Synnøve GrenneSammendrag
Det er ikke registrert sammendrag
Forfattere
Line Nybakken YeonKyeong Lee Dag Anders Brede Melissa Magerøy Ole Christian Lind Brit Salbu Valerii Kashparov Jorunn Elisabeth OlsenSammendrag
Det er ikke registrert sammendrag
Forfattere
Yi Zhang Zhangmu Jing Yijing Feng Shuo Chen Yeqing Li Yongming Han Lu Feng Junting Pan Mahmoud Mazarji Hongjun Zhou Xiaonan Wang Chunming XuSammendrag
Exploring key factors has important guidance for understanding complex anaerobic digestion (AD) systems. This study proposed a multi-layer automated machine learning framework to understand the complex interactions in AD systems and explore key factors at the environmental factor, microorganisms and system levels. The first layer of the framework identified hydraulic residence time (HRT) as the most important environmental factor, with an optimal range of 33–45 d. In the second layer of the framework, Methanocelleus (optimal relative abundance (ORA) = 3.0%) and Candidatus_Caldatribacterium (ORA = 1.7%) were found to be the key archaea and bacteria, respectively. Furthermore, the prediction of key microorganisms based on environmental factors and remaining microbial data showed the essential roles of Methanothermobacter and Acetomicrobium. The third layer for finding the optimal combination of data variables for predicting biogas production demonstrated that combined Archaea genera and environmental factors should be achieved for the most accurate prediction (root mean square error (RMSE) = 84.21). GBM had the best model performance and prediction accuracy among all the built-in models. Based on the optimal GBM model, the analysis at the system level showed that HRT was the most important variable. However the most important microorganism, Methanocelleus, within the appropriate survival range is also essential to achieve optimal biogas production. This research explores key parameters at various levels through automated machine learning techniques, which are expected to provide guidance in understanding the complex architecture of industrial and laboratory AD systems.
Forfattere
Rui Dong Yuxin Miao Pete Berry Xinbing Wang Fei Yuan Krzysztof Kusnierek Chris Baker Mark SterlingSammendrag
Lodging is a major problem in maize (Zea mays L.) production worldwide. An analytical lodging model has previously been established. However, some of the model inputs are time consuming to obtain and require destructive plant sampling. Efficient prediction of lodging risk early in the season would be beneficial for management decision-making to reduce lodging risks and ensure high yield potential. Remote sensing technology provides an alternative method for fast and nondestructive measurements with the potential for efficient prediction of lodging risks. The objective of this study was to explore the potential of using an active canopy sensor for the early prediction of maize stem lodging risk using simple regression and multiple linear regression (MLR) models. The results indicated that the MLR models using active canopy sensor data together with weather and management factors performed better than simple regression models using only sensor data for predicting maize stem lodging indicators. Similar results were achieved either using regression models to predict the maize stem lodging risk indicators directly or using the regression models to predict lodging related plant parameters as inputs to a process-based lodging model to predict lodging risk indicators indirectly, although the latter approach using MLR models performed slightly better. A medium planting density (7.0 plants m-2) and 240 kg ha-1 N rate would be suitable in the study region, and the recommendations may be adjusted according to different weather conditions. It is concluded that maize stem lodging risks can be predicted using active canopy sensor data together with weather and management information at V8 stage, which can be used to guide in-season management decisions. Additional research is needed to evaluate the potential of using unmanned aerial vehicles and satellite remote sensing technologies in conjunction with machine learning methods to improve the prediction of lodging risks for large scale applications.