Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

In the EU 2020 biodiversity strategy, maintaining and enhancing forest biodiversity is essential. Forest managers and technicians should include biodiversity monitoring as support for sustainible forest management and conservation issues, through the adoption of forest biodiversity indices. The present study investigates the potential of a new type of Structure from Motion (SfM) photogrammetry derived variables for modelling forest structure indicies, which do not require the availability of a digital terrain model (DTM) such as those obtainable from Airborne Laser Scanning (ALS) surveys. The DTM-independent variables were calculated using raw 3D UAV photogrammetric data for modeling eight forest structure indices which are commonly used for forest biodiversity monitoring, namely: basal area (G); quadratic mean diameter (DBHmean); the standard deviation of Diameter at Breast Height (DBHσ); DBH Gini coefficient (Gini); the standard deviation of tree heights (Hσ); dominant tree height (Hdom); Lorey’s height (Hl); and growing stock volume (V). The study included two mixed temperate forestsareas withadifferenttype ofmanagement, with onearea, left unmanagedfor thepast 50years while the other being actively managed. A total of 30 fieldsample plots were measured in the unmanaged forest, and 50 field plots were measured in the actively managed forest. The accuracy of UAV DTM-independent predictions was compared with a benchmark approach based on traditional explanatory variables calculated from ALS data. Finally, DTM-independent variables were used to produce wall-to-wall maps of the forest structure indices in the two test areas and to estimate the mean value and its uncertainty according to a model-assisted regression estimators. DTM-independent variables led to similar predictive accuracy in terms of root mean square error compared to ALS in both study areas for the eight structure indices (DTM-independent average RMSE% = 20.5 and ALS average RMSE% = 19.8). Moreover, we found that the model-assisted estimation, with both DTM-independet and ALS, obtained lower standar errors (SE) compared to the one obtained by modelbased estimation using only field plots. Relative efficiency coefficient (RE) revealed that ALS-based estimates were, on average, more efficient (average RE ALS = 3.7) than DTM-independent, (average RE DTM-independent = 3.3). However, the RE for the DTM-independent models was consistently larger than the one from theALSmodelsfortheDBH-relatedvariables(i.e.G,DBHmean,andDBHσ)andforV.Thishighlightsthepotential of DTM-independent variables, which not only can be used virtually on any forests (i.e., no need of a DTM), but also can produce as precise estimates as those from ALS data for key forest structural variables and substantially improve the efficiency of forest inventories.

Til dokument

Sammendrag

Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.

Sammendrag

I 2010 fekk dei tre gardsbruka på Ulvund skjøtselsplan. På oppdrag for Fylkesmannen i Vestland fekk NIBIO i 2020 oppdrag å revidere skjøtselsplanen frå 2010. Denne NIBIO-rapporten summerar dette revideringsarbeidet. På Ulvund er store delar av innmarka artsrik slåttemark og lauveng i god tilstand. Områda har vore i kontinuerleg bruk, og eit stort tal styvingstre blir lauva årleg. Kulturlandskapet på Ulvund er i ein nasjonal særstilling der tradisjonell og allsidig bruk med bl.a. at husdyr hald i hevd eit variert og rikt landskap. Lauvengene på Ulvund reknast som dei største i kontinuerleg hevd i Norge. I skjøtselsplanen frå 2010 blei det satt opp eit mål om at naturengareala skulle utgjere om lag 20 dekar i 2020. Etter registreringa i 2020 utgjorde dei artsrike naturengareala i god hevd om lag 25 dekar. Både slåttemark og lauveng er raudlista naturtypar med status kritisk trua, CR. Dei har og status som Utvalde naturtypar, UN, og dekkast av Naturmangfaldlova. Denne reviderte skjøtselsplanen samanfattar tiltak som kan ta vare på og auke det kulturavhengige biomangfaldet på Ulvund dei neste 10 åra.

Til dokument

Sammendrag

Key words: Psittaciformes, CITES, Appendix I parrots, Status and trade assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, VKM Background: Parrots are one of the most species-rich groups of birds of which the majority inhabits tropical and subtropical forests. Nearly one-third of parrots are threatened with extinction (IUCN categories CR, EN or VU) and more than half of the world’s parrot species are assumed to be decreasing in numbers. Parrots are popular pets on all continents, mainly due to their colourful feathers, their capacity to mimic the human voice, and their tolerance to life in captivity. More than 250 species have been traded internationally. Since the inception of CITES in 1975, trade of about 12 million live wild-sourced parrots has been registered. Currently, 55 parrot species are listed on CITES Appendix I (Norwegian CITES regulation list A) that includes the most endangered among CITES-listed animals and plants. In compliance with CITES, Norway only permits import for commercial purposes of Appendix I listed parrots bred in captivity in operations included in the Secretariat's Register (Resolution Conf. 12.10 (Rev. CoP15). Presently, 9 of the Appendix I parrot species are bred in such facilities. Import of Appendix I species to Norway requires permits both from the exporter’s CITES authority and the Norwegian Environment Agency (Norwegian CITES Management Authority). All legal transactions of CITES Appendix I listed species should be recorded in the UNEP World Conservation Monitoring Centre (UNEP-WCMC) Trade Database. However, discrepancies are common, demonstrating that the trade monitoring is not accurate. Moreover, several studies suggest that regardless of efforts to regulate trade, the global conservation situation for parrots may be worse than estimated by the IUCN species statuses. Even though habitat loss is the main threat to most parrot species, it has been suggested that priority should be given to conservation actions aimed at reducing the illegal capture of wild parrots for the pet trade. As Norway’s CITES Scientific Authority, the Norwegian Scientific Committee for Food and Environment (VKM) was assigned by the Norwegian Environment Agency to assess the status of populations and trade for Appendix I parrot species. Methods: As different trade patterns are typical for different geographic regions, the species were initially divided into three groups: Africa, Australasia and Central and South America. For species with commercial trade registered in the UNEP-WCMC trade database after year 2010 a full assessment was made. In addition, two species for which negative impact from illegal trade is suspected were also fully assessed. The assessments are based on the Norwegian Cites Regulation and Article III of the Convention and Resolution 16.7(Rev.CoP17). Information on the parrot species assessed in this report were gathered from the text accounts published by BirdLife International and Birds of the World as well as literature cited in the text. Results: VKM undertook full assessments of the population status and trade for 26 of the 55 CITES Appendix I species. The species assessments are presented as fact sheets. They each contain a brief summary of the species’ biology (name, taxonomy, distribution, life history, habitat and role in ecosystem), populations and trends, threats and conservation status, population surveillance and regulations, evaluation of legal/illegal trapping and trade, overall assessment of data quality and references. We found that the quantity, as well as quality, of the information available for the Appendix I parrot species varied much. This was the case for data on general biology, population size and trends and levels of illegal trade. For all of the 23 of species for which commercial trade was registered since 2010 in the UNEP-WCMC trade database discrepancies ........

Til dokument

Sammendrag

ANDERcontrol with the predatory mite Amblyseius andersoni as the active organism is sought to be used as a biological control agent in Norway. ANDERcontrol is intended for use against different mites (such as the two-spotted, fruit-tree, and red spider mite, russet mite,cyclamen mite) and in horticultural crops such as fruits, berries, vegetables, and ornamental. VKM’s conclusions are as follows Prevalence, especially if the organism is found naturally in Norway: Amblyseius andersoni has not been observed in Norway. It has been observed, in low numbers, in southern Sweden and has the capability to enter diapause under unfavourable conditions which suggests the potential for establishing under Norwegian conditions. It is however, the view of VKM that it likely lacks the ability to survive and establish in areas with cold winters and chilly summers, as found in most parts of Norway under current climatic conditions. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field: The thermal preference of A. andersoni restricts its establishment, and the species has not been observed in Norway. The species is capable of entering diapause, but the lack of records, despite targeted surveys, makes it the opinion of VKM that it is unlikely that A. andersoni will be able to establish in outdoor areas in Norway. However, the lack of information on temperature tolerance of the species constitute an uncertainty factor. The risk of spread from greenhouses is low because no wind or vector are likely to carry the mites from the greenhouse to suitable outdoor habitats, and mite populations in greenhouses do not enter the more cold-tolerant diapause. All conclusions are uncertain due to lack of relevant information regarding the species’ climate tolerance. Any ambiguities regarding the taxonomy, which hampers risk assessment: There are no taxonomic challenges related to the assessment of A. andersoni. Assessment of the product and the organism with regard to possible health risk: VKM is unaware of reports where harm to humans by A. andersoni itself, or associated pathogenic organisms have been observed. Mites may however produce allergic reactions in sensitive individuals handling plant material with high numbers of individuals. There is reason to believe that this holds true also for A. andersoni. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, predatory mite

Til datasett

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

Fekalkildesporing er en teknikk som gir informasjon om hvilken dyregruppe bakterier fra avføring stammer fra. NIBIO har nylig utviklet en metode som angir hvilken andel bakterier som stammer fra fem grupper: fire spesifikke dyregrupper (inkludert mennesker) og en femte gruppe som dekker øvrige dyrearter. Metoden gjør det mulig å skille utslipp fra kommunalt nett (mennesker) fra andre kilder (f.eks dyrehold eller vilt). Denne artikkelen beskriver bruk av metoden langs Nitelva på strekningen gjennom gamle Skedsmo kommune (nå Lillestrøm). De høye konsentrasjonene av Escherichia coli (E. coli) som ble målt på våren (mai 2019) definerer fekal vannforurensing som skyldes dyr (mest sannsynlig vannfugler) og ikke mennesker.

Til dokument

Sammendrag

Program for jord- og vannovervåking i landbruket (JOVA) ledes av NIBIO divisjon for miljø og naturressurser og gjennomføres i samarbeid med Divisjon for bioteknologi og plantehelse, flere av forskningsstasjonene i NIBIO og andre institusjoner. JOVA overvåker jordbruksdominerte nedbørfelt over hele landet, og feltene representerer ulike driftsformer og ulike jordbunns-, hydrologiske og klimatiske forhold. JOVA rapporterer årlig om jordbruksdrift, avrenning og tap av partikler, næringsstoffer og plantevernmidler for hvert nedbørfelt. Tap av partikler og næringsstoffer rapporteres for agrohydrologisk år, 1. mai – 1. mai, og tap av plantevernmidler for kalenderår.

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

I 2018 vart totalt 130 prøvar av jord frå importerte grøntanleggsplanter analyserte for nematodar og Phytophthora spp. i OK-programmet «Nematoder og Phytophthora spp. i jord på importerte planter”. Prøvane vart tatt ut av inspektørar ved regionkontora til Mattilsyner. Større tre til utplanting hadde førsteprioritet. Her rapporterar vi Phytophthora-delen av OK-programmet. I 35 % av prøvane vart det totalt funne 14 Phytophthora-artar fordelt på fleire opphavsland; Polen, Tyskland, Nederland, Belgia, Italia og våre to naboland Sverige og Danmark. Ingen av Phytophthora-artane var karanteneorganismar, men fleire av dei gjer i dag skade i både grøntanlegg og norsk natur, til dømes Phytophthora cambivora og P. plurivora på bøk (Fagus sylvatica). Kartleggingsprogrammet skal fylgjast opp i 2019.