Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Johannes Breidenbach Janis Ivanovs Annika Kangas Thomas Nord-Larsen Mats Nilsson Rasmus AstrupSammendrag
Policy measures and management decisions aimed at enhancing the role of forests in mitigating climate change require reliable estimates of carbon (C)-stock dynamics in greenhouse gas inventories (GHGIs). The aim of this study was to assemble design-based estimators to provide estimates relevant for GHGIs using National Forest Inventory (NFI) data. We improve basic expansion (BE) estimators of living-biomass C-stock loss using only field data, by leveraging with remote sensing auxiliary data in model-assisted (MA) estimators. Our case studies from Norway, Sweden, Denmark, and Latvia covered an area of >70 Mha. Landsat-based forest cover loss (FCL) and one-time wall-to-wall airborne laser scanning (ALS) served as auxiliary data. ALS provided information on the C stock before a potential disturbance indicated by FCL. The use of FCL in MA estimators resulted in considerable efficiency gains, which in most cases were further increased by adding ALS. A doubling of efficiency was possible for national estimates and even larger efficiencies were observed at the subnational level. Average annual estimates were considerably more precise than pooled estimates of the NFI data from all years at once. The combination of remotely sensed and NFI field data yields reliable estimators, which is not necessarily the case when using remotely sensed data without reference observations.
Sammendrag
Many greenkeepers and authorities are concerned about the environmental risks resulting from pesticide use on golf courses. We studied leaching and surface runoff of fungicides and metabolites during two winter seasons after fall application of boscalid, pyraclostrobin, prothioconazole, trifloxystrobin and fludioxonil in field lysimeters at NIBIO Landvik, Norway. The applications were made on creeping bentgrass greens (5% slope) that had been established from seed or sod (26 mm mat) on USGA‐spec. root zones amended with Sphagnum peat or garden compost, both with 0.3‐0.4% organic carbon in the root zone. The proportions of the winter precipitation recovered as surface and drainage water varied from 3 and 91% in 2016‐17 to 33 and 55% in 2017‐18 due to differences in soil freezing, rainfall intensity and snow and ice cover. Detections of fungicides and their metabolites in drainage water were mostly within the Environmental Risk Limits (ERLs) for aquatic organisms. In contrast, concentrations in surface runoff exceeded ERLs by up to 1000 times. Greens established from sod usually had higher fungicide losses in surface runoff but lower losses in drainage water than greens established from seed. Presumably because of higher microbial activity and a higher pH that made prothioconazole‐desthio more polar, fungicide and metabolite losses in drainage water were usually higher from greens containing compost that from greens containing peat. Leaching of fungicides and metabolites occurred even from frozen greens. The results are discussed in a practical context aiming for reduced environmental risks from spraying fungicides against turfgrass winter diseases.
Forfattere
Jouni Siipilehto Harri Mäkinen Kjell Andreassen Mikko PeltoniemiSammendrag
Ageing and competition reduce trees’ ability to capture resources, which predisposes them to death. In this study, the effect of senescence on the survival probability of Norway spruce (Picea abies (L.) Karst.) was analysed by fitting alternative survival probability models. Different model formulations were compared in the dataset, which comprised managed and unmanaged plots in long-term forest experiments in Finland and Norway, as well as old-growth stands in Finland. Stand total age ranged from 19 to 290 years. Two models were formulated without an age variable, such that the negative coefficient for the squared stem diameter described a decreasing survival probability for the largest trees. One of the models included stand age as a separate independent variable, and three models included an interaction term between stem diameter and stand age. According to the model including stand age and its interaction with stem diameter, the survival probability curves could intersect each other in stands with a similar structure but a different mean age. Models that did not include stand age underestimated the survival rate of the largest trees in the managed stands and overestimated their survival rate in the old-growth stands. Models that included stand age produced more plausible predictions, especially for the largest trees. The results supported the hypothesis that the stand age and senescence of trees decreases the survival probability of trees, and that the ageing effect improves survival probability models for Norway spruce.
Forfattere
Milan Flach Alexander Brenning Fabian Gans Markus Reichstein Sebastian Sippel Miguel D. MahechaSammendrag
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the duration, timing, and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross primary production (GPP), i.e., the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts. However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in situ land CO2 flux observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests, if considered globally, appear in general to not be particularly sensitive to droughts and heat events that occurred during the analyzed period or even show increased GPP values during these events. On the one hand, normal-to-increased GPP values are in many cases plausible, e.g., when conditions prior to the event have been particularly positive. On the other hand, however, normal-to-increased GPP values in forests may also reflect a lack of sensitivity in current remote-sensing-derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.
Redaktører
Camilla BaumannSammendrag
Året 2020 vil gå inn i historien som et spesielt og annerledes år – koronaåret. Dette har selvsagt også preget NIBIO. Men til tross for det, så har vi mye å vise til av faglig produksjon og formidling, fordelt over et stort spekter av områder med betydning for mange i det norske samfunnet. Året 2020 er spesielt også av en annen grunn – det var det året NIBIO fylte fem år. Fusjoner tar tid, kan være krevende, men skaper også rom for utvikling og nødvendig omstilling. NIBIO har i så måte kommet langt på disse fem årene. Med en omfattende faglig aktivitet landet rundt, og mer og mer også utenfor landets grenser. Vårt brede fundament i produksjonsfaglige problemstillinger og verdiskaping, og ressurs- og miljøfaglige problemstillinger med økonomi og samfunnsfag inkludert, gjør at vi har de beste forutsetninger for å si at «NIBIO gir bærekraft mening». Dette er kjernen i vårt samfunnsansvar. Altså at vår kompetanse skal bidra til et godt samfunn, der de bærekraftige løsningene gjerne avhenger av at man både evner, og har tilstrekkelig faglig innsikt til å balanse ulike hensyn. Med stort mangfold og over 1000 prosjekter i porteføljen vil det knapt være mulig å gi et heldekkende bilde av den faglige aktiviteten i NIBIO. Vi presenterer derfor i dette heftet et lite knippe av artikler, som gir det man gjerne kan kalle små smakebiter fra vår faglige virksomhet i 2020. Og så håper vi at disse utvalgte smakebitene er tilstrekkelig fristende til at du søker mer kunnskap om NIBIO og alt det spennende av prosjekter og faglig utvikling våre 700 ansatte bidrar med.
Forfattere
Marian Schönauer Kari Väätäinen Robert Prinz Harri Lindeman Dariusz Pszenny Martin Jansen Joachim Maack Bruce Talbot Rasmus Astrup Dirk JaegerSammendrag
The utilization of detailed digital terrain models entails an enhanced basis for supporting sustainable forest management, including the reduction of soil impacts through predictions of site trafficability during mechanized harvesting operations. Since wet soils are prone to traffic-induced damages, soil moisture is incorporated into several systems for spatial predictions of trafficability. Yet, only few systems consider temporal dynamics of soil moisture, impeding the accuracy and practical value of predictions. The depth-to-water (DTW) algorithm calculates a cartographic index which indicates wet areas. Temporal dynamics of soil moisture are simulated by different DTW map-scenarios derived from set flow initiation areas (FIA). However, the concept of simulating seasonal moisture conditions by DTW map-scenarios was not analyzed so far. Therefore, we conducted field campaigns at six study sites across Europe, capturing time-series of soil moisture and soil strength along several transects which crossed predicted wet areas. Assuming overall dry conditions (FIA = 4.00 ha), DTW predicted 20% of measuring points to be wet. When a FIA of 1.00 ha (moist conditions) or 0.25 ha (wet conditions) were applied, DTW predicted 29% or 58% of points to be wet, respectively. De facto, 82% of moisture measurements were predicted correctly by the map-scenario for overall dry conditions – with 44% of wet measurements deviating from predictions made. The prediction of soil strength was less successful, with 66% of low values occurring on areas where DTW indicated dryer soils and subsequently a sufficient trafficability. The condition-specific usage of different map-scenarios did not improve the accuracy of predictions, as compared to static map-scenarios, chosen for each site. We assume that site-specific and non-linear hydrological processes compromise the generalized assumptions of simulating overall moisture conditions by different FIA.
Sammendrag
Background The Norwegian forest resource map (SR16) maps forest attributes by combining national forest inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Materials and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is visually stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp. smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species. RMSEs for timber volume ranged between 19%–59% among individual ALS projects. Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.
Sammendrag
Lenaelva har vært betydelig påvirket av både industri, avløp, husdyrhold og arealavrenning fra jordbruket. Over tid har vannkvaliteten blitt bedre, men den økologiske tilstanden er fortsatt moderat med hensyn til eutrofiering langs store deler av elva. Beregninger for 2016 viser at hovedkildene til det menneskeskapte fosfortapet er jordbruk og avløp. Avløp er den største kilden til biotilgjengelig fosfor. Fortsatt opprydding i spredt avløp er derfor det viktigste tiltaket for å bedre vannkvaliteten i elva. Det har dessuten over de siste 20 årene skjedd endringer i jordbruket som kan ha påvirket vannkvaliteten i elva og tilførslene til Mjøsa. Husdyrtettheten har økt, og siden 2013 har også andelen av kornarealet som høstpløyes økt. Dette medfører økt risiko for fosforavrenning. Redusert fosforgjødsling, grasdekte vannveier i forsenkninger, og ‘ingen jordarbeiding om høsten’ vil derfor være viktige tiltak for å redusere fosfortilførslene til elva fra jordbruksarealene. Høye konsentrasjoner av E. coli i elva indikerer at avløp eller husdyrgjødsel bidrar til næringsstoffavrenningen og tiltak for disse kildene bør prioriteres. Miljøovervåkingen av Mjøsa, samt algeoppblomstringen i 2019, indikerer at innsjøen ikke tåler særlig større næringsstoffbelastning. Opprettholdelse av god vannkvalitet i Mjøsa er avhengig av målrettede tiltak i de ulike vassdragene som har utløp i Mjøsa. Dette faktaarket omhandler årsaksforhold, kilder og tiltak for redusert fosforavrenning fra nedbørfeltet til Lenaelva.
Forfattere
Liga Lepse Ingunn M. Vågen Solvita Zeipina Torfinn Torp Margit Olle Eduardo Rosa Raul Dominguez-PerlesSammendrag
Fava bean (Vicia faba L.) yields are featured by high variability, influenced by the agro-environmental conditions during the growing seasons. These legume crops are sensitive to hydric and heat stresses. The adaptation depends on the efficiency of specific cultivars to use the available resources to produce biomass. This capacity is determined by the genotype and agronomical management practices. The present work aimed to uncover the influence of Baltic agro-environmental conditions (fava bean cultivar, plant density, climate, and soil features) on yield and protein content. For this, field trials were set under Baltic agro-climatic conditions, in Latvia and Estonia with five commercially available fava bean cultivars, representing broad genetic variation (‘Gloria’, ‘Julia’, ‘Jogeva’, ‘Lielplatones’, and ‘Bauska’). The results evidenced ‘Bauska’, ‘Julia’, and ‘Lielplatones’, as the most productive cultivars in terms of seed yield (4.5, 3.7, and 4.6 t ha−1, respectively) and protein yield (1.39, 1.22, and 1.36 t ha−1, respectively) under Estonian and Latvian agro-climatic conditions. Sowing these specific cultivars at densities of 30–40 seeds m−2 constitutes sustainable management for fava bean production in conventional cropping systems in the Baltic region.
Vitenskapelig – On the Future Role of Symbols in Environmental Modelling
Michael Hauhs, Holger Lange
Sammendrag
Computer models use symbols in various ways adapted from mathematics, computer science, engineering and the natural sciences. Model applications in ecology often seek to represent future states of ecosystems, a task that has been difficult to achieve. Reflection upon the role of symbols in these models may help to disentangle the various sources and contributions to these perceptions of the environment. The modi of time (past, present, future) are here represented by corresponding forms of modelling as narration, performance, and simulation. All three occur in ecological modelling, and transitions between them may be indicative of modelling limits. Given the difficulties of representing the future of ecosystems and finding relevant analogies in the history of ecosystem use, the most challenging task for contemporary ecological models is to perform appropriately with respect to (Big) monitoring Data. We use an analogy between an environmental crisis in natural history and the current Anthropocene to demonstrate the limits of symbols in modelling which are intended to provide an abstract representation. A shift in emphasis on the engineering and computational aspect is proposed for organizing a sustainable human-environment relationship in the Anthropocene.