Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Resultatmål for prosjektet har vært å finne fram til et optimalt biofilter til oppsamling og rensing av avrenningsvann fra arealer hvor det håndteres plantevernmidler og parkeres/vaskes sprøyteutstyr. Et biofilteranlegg bestående av stablebare kassetter fylt med en blanding av jord (25 %), kompost (25 %) og halm (50 %), og en betongplate (vaskeplatting) med oppsamlingssystem ble anlagt i 2017 med midler fra Forskningmidlene for jordbruk og matindustri. Biofilteret er undersøkt for (1) Effektivitet for rensing av plantevernmidler, (2) Kapasitet gjennom flere års drift, og (3) Nedbrytning og binding av plantevernmidler i biomiksen i biofilterkasettene. Denne utprøvingen er gjennomført i 2018–2020 med midler tildelt fra Landbruksdirektoratet over Handlingsplan for bærekraftig bruk av plantevernmidler (2016–2020).

Til dokument

Sammendrag

Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.

Til dokument

Sammendrag

Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.

Sammendrag

Many greenkeepers and authorities are concerned about the environmental risks resulting from pesticide use on golf courses. We studied leaching and surface runoff of fungicides and metabolites during two winter seasons after fall application of boscalid, pyraclostrobin, prothioconazole, trifloxystrobin and fludioxonil in field lysimeters at NIBIO Landvik, Norway. The applications were made on creeping bentgrass greens (5% slope) that had been established from seed or sod (26 mm mat) on USGA‐spec. root zones amended with Sphagnum peat or garden compost, both with 0.3‐0.4% organic carbon in the root zone. The proportions of the winter precipitation recovered as surface and drainage water varied from 3 and 91% in 2016‐17 to 33 and 55% in 2017‐18 due to differences in soil freezing, rainfall intensity and snow and ice cover. Detections of fungicides and their metabolites in drainage water were mostly within the Environmental Risk Limits (ERLs) for aquatic organisms. In contrast, concentrations in surface runoff exceeded ERLs by up to 1000 times. Greens established from sod usually had higher fungicide losses in surface runoff but lower losses in drainage water than greens established from seed. Presumably because of higher microbial activity and a higher pH that made prothioconazole‐desthio more polar, fungicide and metabolite losses in drainage water were usually higher from greens containing compost that from greens containing peat. Leaching of fungicides and metabolites occurred even from frozen greens. The results are discussed in a practical context aiming for reduced environmental risks from spraying fungicides against turfgrass winter diseases.

Sammendrag

Future weather patterns are expected to result in increased precipitation and temperature, in Northern Europe. These changes can potentially cause an increase in plant disease and insect pests which will alter agricultural practice amongst other things the used crop types and application patterns of pesticides. We use a Bayesian network to explore a probabilistic risk assessment approach to better account for variabilities and magnitudes of pesticide exposure to the aquatic ecosystem. As Bayesian networks link selected input and output variables from various models and other information sources, they can serve as meta-models. In this study, we are using a pesticide fate and transport models (e.g. WISPE) with specific environmental factors such as soil and site parameters together with chemical properties and climate scenarios that are linked to a representative Norwegian study area. The derived exposure of pesticide of the study area is integrated in the Bayesian network model to estimate the risk to the aquatic ecosystem also integrating an effect distribution derived from toxicity test. This Bayesian network model will allow to incorporate climate predictions into ecological risk assessment.

Sammendrag

Plantevernmidler er et viktig verktøy i dagens plantevernpraksis i jordbruket for å sikre gode avlinger. Miljørisikoen knyttet til det enkelte plantevernmiddel vurderes nøye før det godkjennes for bruk, men langvarig overvåking er nødvendig for å avdekke de faktiske miljøkonsentrasjoner og - effekter etter forskriftsmessig bruk av plantevernmidler. Sveriges nasjonale miljøovervåkingsprogram for plantevernmidler startet i 2002. Hovedmålet med programmet er å følge langtidstrender i påvirkningen av jordbrukets plantevernmiddelbruk på kvaliteten av overflate- og grunnvann, samt å bestemme miljøkonsentrasjonene av plantevernmidler i sediment, luft og nedbør. Formålet med denne evalueringen var å vurdere styrker og svakheter ved overvåkingsprogrammet, samt behov for endringer i den praktiske gjennomføringen, rapporteringsprosedyrer og målsetningen med programmet. Denne evalueringen vurderer også behovene hos de aktuelle sluttbrukergruppene for programmet som inkluderer svensk landbruks- og miljøforvaltning, rådgivningstjenesten i landbruket, bønder og bondeorganisasjoner mv.

Sammendrag

In Northern Europe, future changes in land-use and weather patterns are expected to result in increased precipitation and temperature this may cause an increase in plant disease and insect pests. In addition, predicted population increase will change the production demands and in turn alter agricultural practices such as crop types and with that the use pattern of pesticides. Considering these variabilities and magnitudes of pesticide exposure to the aquatic environment still needs to be accounted for better in current probabilistic risk assessment. In order to improve ecological risk assessment, this study explores an alternative approach to probabilistic risk assessment using a Bayesian Network, as these can serve as meta-models that link selected input and output variables from other models and information sources. The developed model integrates variability in both exposure and effects in the calculation of risk estimate. We focus on environmental risk of pesticides in two Norwegian case study region representatives of northern Europe. Using pesticide fate and transport models (e.g. WISPE), environmental factors such as soil and site parameters together with chemical properties and climate scenarios (current and predicted) are linked to the exposure of a pesticide in the selected study area. In the long term, the use of tools based on Bayesian Network models will allow for a more refined assessment and targeted management of ecological risks by industry and policy makers.