Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

A significant challenge in medical diagnostics is the development of simple but efficient tools for the detection/quantification of several biomarkers simultaneously using non-invasive sampling techniques. In this regard, the analysis of proteins (proteomics) is essential for understanding cellular processes and biomarker discovery. However, proteins vary greatly in terms of concentration levels and chemical properties in biological materials. Further, low sample sizes of modern biological models (e.g., patient-derived cell cultures, exosomes, and organoids) remain a big analytical challenge. The present work has focused on the brain cancer glioblastoma, which is in great need of increased knowledge and non-invasive sampling techniques. In addition, human organoids, which could act as a future in vitro model for disease modeling and personalized medicine, have been investigated. We have used high-resolution mass spectrometry for protein identification, exploring a selection of miniaturized liquid chromatography formats (for separation) and sample preparation techniques. By implementing these techniques, we have been able to study exosomes, 2D/3D cell cultures, and organoids, identifying over 6300 proteins in a single run using less than 5 µg of protein. The work has provided important insight into the possibilities and challenges of several novel models. It represents a development toward deeper proteomic profiling focusing on maintaining a high protein yield and time efficiency.

Sammendrag

VIPS is a technology platform for prognosis, monitoring and decision support for integrated pest management in crops in Norway. The service facilitates access to a Danish decision support tool, IPMwise, for the management of weeds. This tool, called VIPS-weeds in Norway, is adjusted to the Norwegian conditions for cereals. VIPS-weeds selects and adjusts the dose of herbicides according to weed species, weed density and temperature. The tool is being tested each year for local adaptations and updating. In 2021, four experiments were performed in spring wheat and barley. The experiments were designed in completely randomised blocks with three replications, and each included a control (unsprayed), a VIPS-weeds, and an adviser choice plot as well as plots for a variety of herbicides that are common in these crops. The weed species and density, development stage and possible herbicide resistance of each species in the control plots as well as crop information and temperature data were registered in VIPS-weeds three days before the normal spraying time. The suggested herbicides (set to be suggested based on the price) were applied to the VIPS-weeds plots. The effect of suggested herbicides and their dose was assessed as the reduction of weed coverage (%) in sprayed plots compared to the control plots 3-4 weeks after spraying. The average efficacy targets for the weed species (observed at least in two fields) Spergula arvensis, Viola sp., Stellaria media, Galeopsis sp., Chenopodium album, and Fumaria officinalis were predicted to be at 91, 84, 65, 83, 80, and 72% respectively, by VIPS-weeds. The results showed an average efficacy of 45, 58, 79, 80, 91 and 82% for these weeds, respectively. The VIPS-weeds solution was economically reasonable and gave similar results as adviser choice in terms of weed control and yield.

Sammendrag

Book of Abstracts p. 213: The perennial creeping weeds Cirsium arvense (L.) Scop., Sonchus arvensis L. and Elymus repens (L.) Gould cause large problems in agricultural production in northern Europe. The management of these species is difficult in organic farming, but easier in conventional farming using herbicides. We collected and analysed literature on the response of these weed species to management practices in order to find knowledge gaps. C. arvense and E. repens are more studied compared to S. arvensis. Both C. arvense and E. repens have recently been the subjects of extended reviews. Elymus repens, a rhizomatous grass, is vulnerable to disturbance and competition due to weak seasonal dormancy, shallow creeping rhizomes and short-lived and low-spreading seeds. Tillage and mowing can effectively control E. repens, but efficacy varies between clones, seasons and treatment frequencies. Combined effects of direct control and competition from main crop/subsidiary crop merit further research. Cirsium arvense and S. arvensis are dicot species with creeping roots, with C. arvense roots being situated deeper in the soil than S. arvensis and both having deeper roots than the rhizomes of E. repens. Cirsium arvense can sprout from the intact root system even below the plough layer. Spring tillage has been shown to control C. arvense better than autumn tillage, and horizontal root cutter (prototype) have promising results on this species. Sonchus arvensis sprouts mainly in spring and summer thus indicating seasonal dormancy. Therefore, spring tillage controls S. arvensis better than autumn tillage. The effect of competition from main crop and subsidiary crops needs further investigation. While E. repens and C. arvense can be significantly controlled by a simple mechanical control strategy alone (repeated tillage and deep root disturbance, respectively), S. arvensis must be managed by a combination of different non-chemical methods. Identified gaps focus on the deep root system and sexual reproduction (C. arvense), the link between disturbance, competition, withering and dormancy in roots (S. arvensis), and the long-term effect of different integrated weed management strategies on the population dynamics (E. repens). We conclude that more research on all three species is needed, especially on the less studied S. arvensis. Keywords: Couch grass, creeping thistle, perennial sow-thistle, mechanical control, crop competition, cover crop, subsidiary crop Acknowledgements: This research was part of the project “AC/DC-weeds- Applying and Combining Disturbance and Competition for an agro-ecological management of creeping perennial weeds” funded within the ERA-Net Cofund SusCrop/EU Horizon 2020, Grant no. 771134.

Til dokument

Sammendrag

Creeping perennial weeds are widely distributed on arable fields. The common control practices are intensive inversion tillage and chemical herbicides. However, these methods are under pressure as they negatively affect non-target species and the environment. The objective of the SusCrop-ERA-NET funded European project ‘AC/DC-weeds’ is to implement agroecological management for creeping perennials in arable farming. Focusing on three important perennial species in central and northern Europe (Sonchus arvensis, Cirsium arvense and Elymus repens), the project addresses these species using and combining different methods. In research, the existing information is checked for the contribution to knowledge. New experimental approaches focus research gaps on biology as well as tools and technologies to enable an agro-ecological management. Paying attention to the needs of farming should raise the probability for a practised agro-ecological management of creeping perennials.