Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

In the absence of effective control measures, the strawberry blossom weevil (Anthonomus rubi) (SBW) and the raspberry beetle (Byturus tomentosus) (RB) cause large (10 - >80%) losses in yield and quality in organically grown raspberry. Attractive lures for both pests were combined into a single multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders. The aim is to develop optimized lures and cost-effective trap designs for mass trapping and to determine the optimum density and spatial and temporal patterns of deployment of the traps for controlling these pests by mass trapping. The combination between an aggregation pheromone that attracts Anthonomus rubi and a raspberry flower volatile that attracts Byturus tomentosus seems to be the best combination.

Til dokument

Sammendrag

The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium, is prevalent in grains and grain-based products in different geographical areas. Although enniatins have not been associated with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of apoptosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome expression profiling of exposed rat primary hepatocytes. Enniatin B altered cellular energy metabolism and reduced cell proliferation in Balb 3T3 and HepG2 cell lines. Furthermore, the proportion of apoptotic cell populations of Balb 3T3 cells slightly increased. On the other hand, enniatin B caused necrotic cell death in primary hepatocytes. Gene expression studies revealed the alteration of energy metabolism due to effects on mitochondrial organization and function and the assembly of complex I of the electron transport chain.

Sammendrag

The prevalence of Fusarium dry rot in potatoes produced in Norway was investigated in a survey for three consecutive years in the period 2010 to 2012. A total of 238 samples (comprising 23,800 tubers) were collected, representing different cultivars and production regions in Norway. Fusarium spp. were detected in 47% of the samples, with one to three species per sample. In total, 718 isolates of Fusarium spp. were recovered and identified to seven species. The most commonly isolated species was Fusarium coeruleum, comprising 59.6% of the total Fusarium isolates and found in 17.2% of the collected samples, followed by Fusarium avenaceum (27.2% of the isolates and found in 27.7% of the samples). Fusarium sambucinum was the third most prevalent species (6.4% in 8.8% of the samples) and Fusarium culmorum the fourth (5.2% in 6.3% of the samples). Less prevalent species included Fusarium cerealis, Fusarium graminearum, and Fusarium equiseti (<1% in 0.4 to 1.3% of the samples). F. coeruleum was the most prevalent species in northern and southwestern Norway, whereas F. avenaceum was dominating in eastern Norway. The potato cultivars Berber and Rutt were susceptible to all Fusarium spp. A new TaqMan real-time PCR assay specific for F. coeruleum was developed, which successfully identified Norwegian isolates. This and other previously developed real-time PCR assays targeting different Fusarium species were evaluated for their ability to detect latent infections in potatoes at harvest. This study provides new information on the current occurrence of different Fusarium species causing Fusarium dry rot in potatoes in Europe including areas far into the arctic in the north of Norway.

Til dokument

Sammendrag

Fusarium species causing maize kernel rot are major threats to maize production, due to reduction in yield as well as contamination of kernels by mycotoxins that poses a health risk to humans and animals. Two-hundred maize kernel samples, collected from 20 major maize growing areas in Ethiopia were analyzed for the identity, species composition and prevalence of Fusarium species and fumonisin contamination. On average, 38 % (range: 16 to 68 %) of maize kernels were found to be contaminated by different fungal species. Total of eleven Fusarium spp. were identified based on morphological characteristics and by sequencing the partial region of translation elongation factor 1-alpha (EF-1α) gene. Fusarium verticillioides was the dominant species associated with maize kernels (42 %), followed by F. graminearum species complex (22.5 %) and F. pseudoanthophilium (13.4 %). The species composition and prevalence of Fusarium species differed among the areas investigated. Fusarium species composition was as many as eight and as few as four in some growing area. The majority of the maize samples (77 %) were found positive for fumonisin, with concentrations ranging from 25 μg kg−1 to 4500 μg kg−1 (mean: 348 μg kg−1 and median: 258 μg kg−1). Slight variation in fumonisin concentration was also observed among areas. Overall results indicate widespread occurrence of several Fusarium species and contamination by fumonisin mycotoxins. These findings are useful for intervention measures to reduce the impact of the main fungal species and their associated mycotoxins, by creating awareness and implementation of good agricultural practices.

Til dokument

Sammendrag

Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity.

Til dokument

Sammendrag

A controlled climatic chamber microcosm experiment was conducted to examine how light affects the hourly sporulation pattern of the beneficial mite pathogenic fungus Neozygites floridana during a 24 h cyclus over a period of eight consecutive days. This was done by inoculating two-spotted spider mites (Tetranychus urticae) with N. floridana and placing them on strawberry plants for death and sporulation. Spore (primary conidia) discharge was observed by using a spore trap. Two light regimes were tested: Plant growth light of 150 μmol m−2 s−1 for 12 h supplied by high pressure sodium lamps (HPS), followed by either; (i) 4 h of 50 μmol m−2 s−1 light with similar HPS lamps followed by 8 h darkness (full HPS light + reduced HPS light + darkness) or (ii) 4 h of 50 μmol m−2 s−1 red light followed by 8 h darkness (full HPS light + red light + darkness). A clear difference in hourly primary conidia discharge pattern between the two different light treatments was seen and a significant interaction effect between light treatment and hour in day during the 24 h cycle was observed. The primary conidia discharge peak for treatment (ii) that included red light was mainly reached within the red light hours (19:00–23:00) and the dark hours (23:00–07:00). The primary conidia discharge peak for treatment (i) with HPS light only was mainly reached within the dark hours (23:00–07:00).

Til dokument

Sammendrag

During the last ten years, Norwegian cereal grain industry has experienced large challenges due to Fusarium spp. and Fusarium mycotoxin contamination of small-grained cereals. To prevent severely contaminated grain lots from entering the grain supply chain, it is important to establish surveys for the most prevalent Fusarium spp. and mycotoxins. The objective of our study was to quantify and calculate the associations between Fusarium spp. and mycotoxins prevalent in oats and spring wheat. In a 6-year period from 2004-2009, 178 grain samples of spring wheat and 289 samples of oats were collected from farmers’ fields in South East Norway. The grains were analysed for 18 different Fusarium-mycotoxins by liquid chromatography – mass spectrometry. Generally, the median mycotoxin levels were higher than reported in Norwegian studies covering previous years. The DNA content of Fusarium graminearum, Fusarium culmorum, Fusarium langsethiae, Fusarium poae and Fusarium avenaceum were determined by quantitative PCR. We identified F. graminearum as the main deoxynivalenol (DON) producer in oats and spring wheat, and F. langsethiae as the main HT-2 and T-2-toxins producer in oats. No association was observed between quantity of F. graminearum DNA and quantity of F. langsethiae DNA nor for their respective mycotoxins, in oats. F. avenaceum was one of the most prevalent Fusarium species in both oats and spring wheat. The following ranking of Fusarium species was made based on the DNA concentrations of the Fusarium spp. analysed in this survey (from high to low): F. graminearum = F. langsethiae = F. avenaceum > F. poae > F. culmorum (oats); F. graminearum = F. avenaceum > F. culmorum > F. poae = F. langsethiae (spring wheat). Our results are in agreement with recently published data indicating a shift in the relative prevalence of Fusarium species towards more F. graminearum versus F. culmorum in Norwegian oats and spring wheat.