Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Forfattere
Min-Rui Wang Zhibo Hamborg Rune Slimestad Abdelhameed Elameen Dag-Ragnar Blystad Sissel Haugslien Gry Skjeseth Qiao‑Chun WangSammendrag
Shallot (Allium cepa var. aggregatum), a small bulb onion, is widely grown in the world. We previously reported a droplet-vitrification for cryopreservation of in vitro-grown shoot tips of shallot genotype ‘10603’. The present study further evaluated rooting, vegetative growth, bulb production and contents of biochemical compounds, as well as genetic stability in cryo-derived plants. The results showed no significant differences in rooting, vegetative growth, bulb production and contents of soluble sugars and flavonols between the cryo- and in vitro-derived plants. Analyses of ISSR and AFLP markers did not detect any polymorphic bands in the cryo-derived plants. These results indicate rooting and vegetative growth ability, biochemical compounds and genetic stability were maintained in cryo-derived plants. The present study provides experimental evidences that support the use of cryopreservation method for long-term preservation of genetic resources of shallots and other Allium species.
Sammendrag
Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no fullgenome sequences are available to date. Therefore, analysis of the red king crab transcriptome and identifcation and characterization of its AMPs could potentially contribute to the development of novel antimicrobial drug candidates when antibiotic resistance has become a global health threat. In this study, we sequenced the P. camtschaticus transcriptomes from carapace, tail fap and leg tissues using an Illumina NGS platform. Libraries were systematically analyzed for gene expression profles along with AMP prediction. By an in silico approach using public databases we defned 49 cDNAs encoding for AMP candidates belonging to diverse families and functional classes, including buforins, crustins, paralithocins, and ALFs (anti-lipopolysaccharide factors). We analyzed expression patterns of 27 AMP genes. The highest expression was found for Paralithocin 1 and Crustin 3, with more than 8,000 reads. Other paralithocins, ALFs, crustins and ubiquicidins were among medium expressed genes. This transcriptome data set and AMPs provide a solid baseline for further functional analysis in P. camtschaticus. Results from the current study contribute also to the future application of red king crab as a bio-resource in addition to its being a known seafood delicacy.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Heidi Udnes Aamot Erik Lysøe Shiori Koga Katherine Ann Gredvig Nielsen Ulrike Böcker Guro Brodal Ruth Dill-Macky Anne Kjersti Uhlen Ingerd Skow HofgaardSammendrag
The bread-making quality of wheat depends on the viscoelastic properties of the dough in which gluten proteins play an important role. The quality of gluten proteins is influenced by the genetics of the different wheat varieties and environmental factors. Occasionally, a near complete loss of gluten strength, measured as the maximum resistance towards stretching (Rmax), is observed in grain lots of Norwegian wheat. It is hypothesized that the loss of gluten quality is caused by degradation of gluten proteins by fungal proteases. To identify fungi associated with loss of gluten strength, samples from a selection of wheat grain lots with weak gluten (n = 10, Rmax < 0.3 N) and strong gluten (n = 10, Rmax ≥ 0.6 N) was analyzed for the abundance of fungal operational taxonomic units (OTUs) using DNA metabarcoding of the nuclear ribosomal Internal Transcribed Spacer (ITS) region ITS1. The DNA quantities for a selection of fungal pathogens of wheat, and the total amount of fungal DNA, were analyzed by quantitative PCR (qPCR). The mean level of total fungal DNA was higher in grain samples with weak gluten compared to grain samples with strong gluten. Heightened quantities of DNA from fungi within the Fusarium Head Blight (FHB) complex, i.e. Fusarium avenaceum, Fusarium graminearum, Microdochium majus, and Microdochium nivale, were observed in grain samples with weak gluten compared to those with strong gluten. Microdochium majus was the dominant fungus in the samples with weak gluten. Stepwise regression modeling based on different wheat quality parameters, qPCR data, and the 35 most common OTUs revealed a significant negative association between gluten strength and three OTUs, of which the OTU identified as M. majus was the most abundant. The same analysis also revealed a significant negative relationship between gluten strength and F. avenaceum detected by qPCR, although the DNA levels of this fungus were low compared to those of M. majus. In vitro growth rate studies of a selection of FHB species showed that all the tested isolates were able to grow with gluten as a sole nitrogen source. In addition, proteins secreted by these fungi in liquid cultures were able to hydrolyze gluten substrate proteins in zymograms, confirming their capacity to secrete gluten-degrading proteases. The identification of fungi with potential to influence gluten quality can enable the development of strategies to minimize future problems with gluten strength in food-grade wheat.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Cereal grain contaminated by Fusarium mycotoxins is undesirable in food and feed because of the harmful health effects of the mycotoxins in humans and animals. Reduction of mycotoxin content in grain by cleaning and size sorting has mainly been studied in wheat. We investigated whether the removal of small kernels by size sorting could be a method to reduce the content of mycotoxins in oat grain. Samples from 24 Norwegian mycotoxin-contaminated grain lots (14 from 2015 and 10 from 2018) were sorted by a laboratory sieve (sieve size 2.2 mm) into large and small kernel fractions and, in addition to unsorted grain samples, analyzed with LC-MS-MS for quantification of 10 mycotoxins. By removing the small kernel fraction (on average 15% and 21% of the weight of the samples from the two years, respectively), the mean concentrations of HT-2+T-2 toxins were reduced by 56% (from 745 to 328 µg/kg) in the 2015 samples and by 32% (from 178 to 121 µg/kg) in the 2018 samples. Deoxynivalenol (DON) was reduced by 24% (from 191 to 145 µg/kg) in the 2018 samples, and enniatin B (EnnB) by 44% (from 1059 to 594 µg/kg) in the 2015 samples. Despite low levels, our analyses showed a trend towards reduced content of DON, ADON, NIV, EnnA, EnnA1, EnnB1 and BEA after removing the small kernel fraction in samples from 2015. For several of the mycotoxins, the concentrations were considerably higher in the small kernel fraction compared to unsorted grain. Our results demonstrate that the level of mycotoxins in unprocessed oat grain can be reduced by removing small kernels. We assume that our study is the first report on the effect of size sorting on the content of enniatins (Enns), NIV and BEA in oat grains.
Forfattere
Ahto Agan Rein Drenkhan Kalev Adamson Leho Tedersoo Halvor Solheim Isabella Børja Iryna Matsiakh Volkmar Timmermann Nina Elisabeth Nagy Ari HietalaSammendrag
European ash (Fraxinus excelsior) is threatened by the invasive ascomycete Hymenoscyphus fraxineus originating from Asia. Ash leaf tissues serve as a route for shoot infection but also as a sporulation substrate for this pathogen. Knowledge of the leaf niche partitioning by indigenous fungi and H. fraxineus is needed to understand the fungal community receptiveness to the invasion. We subjected DNA extracted from unwashed and washed leaflets of healthy and diseased European ash to PacBio sequencing of the fungal ITS1-5.8S-ITS2 rDNA region. Leaflets from co-inhabiting rowan trees (Sorbus aucuparia) served as a reference. The overlap in leaflet mycobiomes between ash and rowan was remarkably high, but unlike in rowan, in ash leaflets the sequence read proportion, and the qPCR-based DNA amount estimates of H. fraxineus increased vigorously towards autumn, concomitant with a significant decline in overall fungal richness. The niche of ash and rowan leaves was dominated by epiphytic propagules (Vishniacozyma yeasts, the dimorphic fungus Aureobasidion pullulans and the dematiaceous hyphomycete Cladosporium ramotenellum and H. fraxineus), and endophytic thalli of biotrophs (Phyllactinia and Taphrina species), the indigenous necrotroph Venturia fraxini and H. fraxineus. Mycobiome comparison between healthy and symptomatic European ash leaflets revealed no significant differences in relative abundance of H. fraxineus, but A. pullulans was more prevalent in symptomatic trees. The impacts of host specificity, spatiotemporal niche partitioning, species carbon utilization profiles and life cycle traits are discussed to understand the ecological success of H. fraxineus in Europe. Further, the inherent limitations of different experimental approaches in the profiling of foliicolous fungi are addressed.