Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
The availability of fresh vegetables grown in greenhouses under controlled conditions throughout the year has given rise to concerns about their impact on the environment. In high latitude countries such as Norway, greenhouse vegetable production requires large amounts of energy for heat and light, especially during the winter. The use of renewable energy such as hydroelectricity and its effect on the environment has not been well documented. Neither has the effect of different production strategies on the environment been studied to a large extent. We conducted a life cycle assessment (LCA) of greenhouse tomato production for mid-March to mid-October (seasonal production), 20th January to 20th November (extended seasonal) production, and year-round production including the processes from raw material extraction to farm gate. Three production seasons and six greenhouse designs were included, at one location in southwestern and one in northern Norway. The SimaPro software was used to calculate the environmental impact. Across the three production seasons, the lowest global warming (GW) potential (600 g CO2-eq per 1 kg tomatoes) was observed during year-round production in southwestern Norway for the design NDSFMLLED + LED, while the highest GW potential (3100 g CO2-eq per 1 kg tomatoes) was observed during seasonal production in northern Norway for the design NS. The choice of artificial lighting (HPS (High Pressure Sodium) or LED (Light Emitting Diodes)), heating system and the production season was found to have had a considerable effect on the environmental impact. Moreover, there was a significant reduction in most of the impact categories including GW potential, terrestrial acidification, and fossil resource scarcity from seasonal to year-round production. Overall, year-round production in southwestern Norway had the lowest environmental impact of the evaluated production types. Heating of the greenhouse using natural gas and electricity was the biggest contributor to most of the impact categories. The use of an electric heat pump and LED lights during extended seasonal and year-round production both decreased the environmental impact. However, while replacing natural gas with electricity resulted in decreased GW potential, it increased the ecotoxicity potential.
Sammendrag
Increased interest in plant-based food in Norway is creating a demand for more locally produced raw material. In addition, the feed industry has the goal to reduce its dependency on imported protein and use more nationally produced plant proteins. In a preliminary research project funded by the Research funding for the Agriculture and the Food industry (FFL/JA) we are investigating the potential for cultivating quinoa, buckwheat, lentils, chickpea, lupin and soya in Southern Norway. While some of these crops have been grown on a very small scale, we lack knowledge about cultivation under Norwegian conditions. These six crops can be cultivated with the same equipment as cereals; thus, they represent interesting candidates to be included in a cereal rotation. Two fields were established in Agder and Innlandet in spring 2021. Two cultivars of each crop, selected for their earliness, were sowed at two different sowing dates between 24th April and 21st May. Soya was sown only once. Pesticides and herbicides were not applied in the trials. Growth stages were recorded every week. A demonstration field was sown in Vestfold with one sowing date per crop between 23rd April and 1st June. All of the crops were harvested between 25th August and 4th November in Agder. The trial in Innlandet was harvested between 15th September and 27th October. However, chickpeas and one cultivar of soya were not ripe in November and were not harvested. The field in Vestfold was harvested between 1st September and 2nd December (after swathing for the latest). Weeds and length of the growing season were the two main challenging parameters impacting yields in 2021. Quinoa was most affected by weeds while chickpeas and soya could not be harvested in all three locations. Both lentils, buckwheat and lupin showed a potential in the three regions in 2021, while soya could be a candidate in the most southern area. Similar field trials are repeated in 2022.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Soil organic carbon (SOC) was studied at 0–45 cm depth after 28 years of cropping with arable and mixed dairy rotations on a soil with an initial SOC level of 2.6% at 0–30 cm. Measurements included both carbon concentration (SOC%) and soil bulk density (BD). Gross C input was calculated from yields. Averaged over all systems, topsoil SOC% declined significantly (−0.20% at 0–15 cm, p = 0.04, −0.39% at 15–30 cm, p = 0.05), but changed little at 30–45 cm (+0.11%, p = 0.15). Declines in topsoil SOC% tended to be greater in arable systems than in mixed dairy systems. Changes in BD were negatively related to those in SOC%, emphasizing the need to measure both when assessing SOC stocks. The overall SOC mass at 0–45 cm declined significantly from 98 to 89 Mg ha−1, representing a loss of 0.3% yr−1 of the initial SOC. Variability within systems was high, but arable cropping showed tendencies of high SOC losses, whilst SOC stocks appeared to be little changed in conventional mixed dairy with 50% ley and organic mixed dairy with 75% ley. The changes were related to the level of C input. Mean C input was 22% higher in mixed dairy than in arable systems.
Forfattere
Erika Krüger Tomasz Leszek Woznicki Ola M. Heide Krzysztof Kusnierek Rodmar Isak Rivero Agnieszka Masny Iwona Sowik Bastienne Brauksiepe Klaus Eimert Daniela Mott Gianluca Savini Marino Demene Karine Guy Aurelie Petit Béatrice Denoyes Anita SønstebySammendrag
Det er ikke registrert sammendrag