Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Denne rapporten oppsummerer to interessegruppemøter arrangert for landbruket. Noen brukerbehov kan innfris innenfor prosjektene, men det er sprik mellom hva forskningsprosjekter kan levere og hva interessegruppen har behov for, slik at ikke alle ønsker kan innfris. Enkelte ønsker har blitt videreformidlet til værvarslingstjenesten. Som et svar på brukerbehov etter interessegruppemøtet i 2022 beregnet vi tetraterm (varmekrav for ulike treslag i sommermånedene), inkludert endringer i tetraterm over tid. Tetratermen har økt i hele landet, og med det øker den potensielle utbredelsen av varmekjære trær. I den nettbaserte versjonen av rapporten (https://storymaps.arcgis.com/stories/d4bddb92349e4e4baf24b20fdaf2ad24) beskrives også eksisterende dataportaler mer inngående, noe interessegruppen har etterspurt.

Til dokument

Sammendrag

Lack of national soil property maps limits the studies of soil moisture (SM) dynamics in Norway. One alternative is to apply the global soil data as input for macro-scale hydrological modelling, but the quality of these data is still unknown. The objectives of this study are 1) to evaluate two recent global soil databases (Wise30sec and SoilGrids) in comparison with data from local soil profiles; 2) to evaluate which database supports better model performance in terms of river discharge and SM for three macro-scale catchments in Norway and 3) to suggest criteria for the selection of soil data for models with different complexity. The global soil databases were evaluated in three steps: 1) the global soil data are compared directly with the Norwegian forest soil profiles; 2) the simulated discharge based on the two global soil databases is compared with observations and 3) the simulated SM is compared with three global SM products. Two hydrological models were applied to simulate discharge and SM: the Soil and Water Integrated Model (SWIM) and the Variable Infiltration Capacity (VIC) model. The comparison with data from local soil profiles shows that SoilGrids has smaller mean errors than Wise30sec, especially for upper soil layers, but both soil databases have large root mean squared errors and poor correlations. SWIM generally performs better in terms of discharge using SoilGrids than using Wise30sec and the simulated SM has higher correlations with the SM products. In contrast, the VIC model is less sensitive to soil input data and the simulated SM using Wise30sec is higher correlated with the SM products than using SoilGrids. Based on the results, we conclude that the global soil databases can provide reasonable soil property information at coarse resolutions and large areas. The selection of soil input data should depend on the characteristics of both models and study areas.

Til dokument

Sammendrag

Denne rapporten er et produkt av Interreg-prosjektet «Skoglig anpassning för ett ändrat klimat» som pågikk i perioden 2018 - 2022. Rapporten sammenfatter kunnskapsfronten for de driftstekniske utfordringene knyttet til transport av virke i terrenget og på skogsvei i et varmere og våtere klima. Velfungerende og kostnadseffektive skogsveier vil være en bærebjelke i begge lands skognæring, så rapporten fokuserer også på byggeskikk, metoder og rammefaktorer for dette.

Til dokument

Sammendrag

Tree diameter increment (ΔDBH) and total tree height increment (ΔHT) are key components of a forest growth and yield model. A problem in complex, multi-species forests is that individual tree attributes such as ΔDBH and ΔHT need to be characterized for a large number of distinct woody species of highly varying levels of occurrence. Based on more than 2.5 million ΔDBH observations and over 1 million ΔHT records from up to 60 tree species and genera, respectively, this study aimed to improve existing ΔDBH and ΔHT equations of the Acadian Variant of the Forest Vegetation Simulator (FVS-ACD) using a revised method that utilize tree species as a random effect. Our study clearly highlighted the efficiency and flexibility of this method for predicting ΔDBH and ΔHT. However, results also highlighted shortcomings of this approach, e.g., reversal of plausible parameter signs as a result of combining fixed and random effects parameter estimates after extending the random effect structure by incorporating North American ecoregions. Despite these potential shortcomings, the newly developed ΔDBH and ΔHT equations outperformed the ones currently used in FVS-ACD by reducing prediction bias quantified as mean absolute bias and root mean square error by at least 11% for an independent dataset and up to 41% for the model development dataset. Using the revised ΔDBH and ΔHT estimates, greater prediction accuracy in individual tree aboveground live carbon mass estimation was also found in general but performance varied with dataset and accuracy metric examined. Overall, this analysis highlights the importance and challenges of developing robust ΔDBH and ΔHT equations across broad regions dominated by mixed-species, managed forests.

Til dokument

Sammendrag

Just as the aboveground tree organs represent the interface between trees and the atmosphere, roots act as the interface between trees and the soil. In this function, roots take-up water and nutrients, facilitate interactions with soil microflora, anchor trees, and also contribute to the gross primary production of forests. However, in comparison to aboveground plant organs, the biomass of roots is much more difficult to study. In this study, we analyzed 19 European datasets on above- and belowground biomass of juvenile trees of 14 species to identify generalizable estimators of root biomass based on tree sapling dimensions (e.g. height, diameter, aboveground biomass). Such estimations are essential growth and sequestration modelling. In addition, the intention was to study the effect of sapling dimension and light availability on biomass allocation to roots. All aboveground variables were significant predictors for root biomass. But, among aboveground predictors of root biomass plant height performed poorest. When comparing conifer and broadleaf species, the latter tended to have a higher root biomass at a given dimension. Also, with increasing size, the share of belowground biomass tended to increase for the sapling dimensions considered. In most species, there was a trend of increasing relative belowground biomass with increasing light availability. Finally, the height to diameter ratio (H/D) was negatively correlated to relative belowground biomass. This indicates that trees with a high H/D are not only more unstable owing to the unfavorable bending stress resistance, but also because they are comparatively less well anchored in the ground. Thus, single tree stability may be improved through increasing light availability to increase the share of belowground biomass.