Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Wheel ruts, i.e. soil deformations caused by harvesting machines, are considered a negative environmental impact of forest operations and should be avoided or ameliorated. However, the mapping of wheel ruts that would be required to monitor harvesting operations and to plan amelioration measures is a tedious and time-consuming task. Here, we examined whether a combination of drone imagery and algorithms from the field of artificial intelligence can automate the mapping of wheel ruts. We used a deep-learning image-segmentation method (ResNet50 + UNet architecture) that was trained on drone imagery acquired shortly after harvests in Norway, where more than 160 km of wheel ruts were manually digitized. The cross-validation of the model based on 20 harvested sites resulted in F1 scores of 0.69–0.84 with an average of 0.77, and in total, 79 per cent of wheel ruts were correctly detected. The highest accuracy was obtained for severe wheel ruts (average user’s accuracy (UA) = 76 per cent), and the lowest accuracy was obtained for light wheel ruts (average UA = 67 per cent). Considering the nowadays ubiquitous availability of drones, the approach presented in our study has the potential to greatly increase the ability to effectively map and monitor the environmental impact of final felling operations with respect to wheel ruts. The automated mapping of wheel ruts may serve as an important input to soil impact analyses and thereby support measures to restore soil damages.

Sammendrag

I 2016-2020 gjennomførte Landsskogtakseringen detaljerte registreringer av grøftede arealer på alle prøveflater i skog og på all myrlendt snaumark, inkludert myrlendt snaumark over skoggrensa, med et samlet representativt areal på 140 215 km2. Der hvor grøfter forekom ble det registrert grøftetype, grøftens tilstand, grøftelengde og gjennomsnittlig grøftebredde. Til sammen er det registrert et grøftet areal på 6064 km2, hvorav 1554 km2 på organisk jord (torvjord med minst 40 cm torvdybde) og 4510 km2 på mineraljord. Grøftenes funksjon kan grovt deles i to hovedgrupper: 1) for økt skogtilvekst og 2) andre formål, slik som drenering langs veier, dyrka mark, bebygde områder, etc. Organisk jord er primært grøftet for økt skogtilvekst (1062 km2). Mineraljord er primært grøftet for andre formål, og i mindre grad for økt skogtilvekst (1748 km2). Kapittel 3 gir detaljer oversikt over hvor stor andel av forskjellige arealer som er grøftet. Her gis slike statistikker for ulike skog- og myrtyper, skoglig produktivitet (bonitet), dominerende treslag og vegetasjonstyper på myr og i skog. I de fleste tilfeller er statistikkene videre oppdelt på geografiske regioner. Kapittel 4 omhandler grøftetyper og grøftenes tilstand. På arealer som er grøftet for økt skogtilvekst kan grøftetilstanden mange steder være utilfredsstillende sett fra et skogproduksjons-perspektiv. Dette gjelder særlig sidegrøfter hvor omtrent 65 % av grøftene har svak eller dårlig tilstand. For avløpsgrøfter er tilstanden svak eller dårlig på 47-54 % av grøftene (mest utilfredsstillende på mineraljord). Kapittel 5 fokuserer på skogarealer som er drenert for skogbruksformål og som kan være aktuelle for grøfterensk. Her viser vi hvordan det grøftede arealet fordeler seg i forhold til hogstklasse, bonitet og driftsveilengde, samt hvor mange kilometer grøft som forekommer på disse arealene. Videre viser vi hvordan disse arealene fordeler seg i forhold til geografiske regioner og antall kilometer grøft som er i ulike grøftetilstander, samt hvor mye av dette som er i ung skog (hogstklasse 1-3) og eldre skog (hogstklasse 4-5). Landsskogtakseringen har også registrert endringer i vegetasjonsdekket på de drenerte arealene. Kapittel 6 fokuserer på organisk jord, og viser påvirkning på vegetasjon for ulike typer grøfter og antall meter med grøft.

Til dokument

Sammendrag

I 1921 kjøpte Vestlandets forstlige forsøksstasjon 340 dekar av utmarka på Auestad i Gjesdal kommune i Rogaland, der formålet var å gjera vitskaplege undersøkingar av skogetablering og produksjon i ulike treslag. Arealet var snaumark og i all hovudsak røsslynghei, ein arealtype som ofte gir langvarig veksthemming etter planting av granartar. Feltet ligg på Høg-Jæren 240-310 m o. h. på næringsfattig grunn. Litt under halvparten av arealet vart før anlegg klassifisert som eigna mark for skogreising. Jorda er morene med frisk råme, og med råhumus som dominerande humustype. Frå 1922 til 1933 vart det planta om lag 120 dekar med vanleg gran, sitkagran, engelmannsgran , blågran, vanleg furu, bergfuru, vrifuru, europeisk edelgran, douglasgran, nutkasypress og europeisk lerk. Plantinga vart gjort i ruter på om lag 70 x 70 m, med ei rute for kvar proveniens og treslag, og seinare i mindre ruter med vestamerikansk hemlokk og douglasgran. Det vart òg gjort forsøk med såing av dunbjørk. I åra 1953 til 1984 vart det oppretta 15 skogproduksjonsforsøk i planteruter med vanleg gran, sitkagran, engelmannsgran, europeisk lerk, edelgran, furu og bergfuru. Alle forsøksflatene har vore tynna ein eller fleire gonger, og forsøka har vore jamleg reviderte med nokre års mellomrom. Sju forsøk finst framleis i 2022, resten er nedlagde på grunn av ulike skadar eller hogst. Forsøksfelta i Auestad inngår i mange vitskapelege skogundersøkingar, og nokre resultat etter om lag 100 år med målingar og observasjonar er tekne med her. Alle treslaga i produksjonsforsøka, unnateke europeisk lerk, har hatt ein differanse mellom brysthøgde- og totalalder på 20 år eller meir, som viser at etableringa på lyngmark har teke tid. Produksjonen i vanleg furu etter 100 år har vore rundt 6 m3/ha/år. Lerka fekk mykje lerkekreft og forsøket vart tidleg lagt ned. Bergfurua har vist produksjon på høgde med vanleg furu, men har på grunn av sopp- og vindskadar vorte nedlagt. Tyngda av forsøksrutene i sitkagran har over eit omløp på 100 år hatt ein produksjon på 12-14 m3/ha/år, medan produksjonen for vanleg gran og edelgran ligg mellom 8 og 10 m3/ha/år. Engelmannsgrana har vist ein produksjon noko lågare enn vanleg gran og er det einaste treslaget som til no har kulminert. I furubestanda er det i biomassen bygd opp om lag 125 tonn C per hektar i løpet av 100 år, medan det i vanleg gran- og sitkagranbestanda er bygd opp høvesvis 200 og 320 tonn C. Furu-, vanleg gran- og sitkagranplantefelta inneheld høvesvis 5, 8 og 13 gonger meir karbon enn skoglaus røsslyngmark. I tillegg til eit stort kvantum med tømmer er det på dei skogreiste areala i Auestad gjennom 100 år bunde om lag 9 600 tonn CO2-ekvivalentar i biomassen. Dette utgjer skyggeverdiar estimert til 19,2 mill. kr. På hogstflater og mellom forsøksrutene er det rike oppslag av lauvtre. Areala dekkjer fleire økosystemtenester der til dømes jakt kan verdsettast, medan andre er fellesgode som det er meir vanskeleg å verdsette, mellom anna sopp- og bærplukking og bruk av stiar og vegar til rekreasjon.

Til dokument

Sammendrag

Purpose of Review Mechanized logging operations with ground-based equipment commonly represent European production forestry but are well-known to potentially cause soil impacts through various forms of soil disturbances, especially on wet soils with low bearing capacity. In times of changing climate, with shorter periods of frozen soils, heavy rain fall events in spring and autumn and frequent needs for salvage logging, forestry stakeholders face increasingly unfavourable conditions to conduct low-impact operations. Thus, more than ever, planning tools such as trafficability maps are required to ensure efficient forest operations at reduced environmental impact. This paper aims to describe the status quo of existence and implementation of such tools applied in forest operations across Europe. In addition, focus is given to the availability and accessibility of data relevant for such predictions. Recent Findings A commonly identified method to support the planning and execution of machine-based operations is given by the prediction of areas with low bearing capacity due to wet soil conditions. Both the topographic wetness index (TWI) and the depth-to-water algorithm (DTW) are used to identify wet areas and to produce trafficability maps, based on spatial information. Summary The required input data is commonly available among governmental institutions and in some countries already further processed to have topography-derived trafficability maps and respective enabling technologies at hand. Particularly the Nordic countries are ahead within this process and currently pave the way to further transfer static trafficability maps into dynamic ones, including additional site-specific information received from detailed forest inventories. Yet, it is hoped that a broader adoption of these information by forest managers throughout Europe will take place to enhance sustainable forest operations.