Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2004

Sammendrag

Extensive monitoring of forest health in Europe has been carried out for two decades, based mainly on defoliation and discolouration. Together these two variables reflect chlorophyll amounts in the tree crown, i.e. as an indicator of foliar mass, and chlorophyll concentration in the foliage, respectively.In a current project we try to apply remote sensing techniques to estimate canopy chlorophyll mass, being a suitable forest health variable. So far, we limit this to Norway spruce only. LIDAR data here play an important role, together with optical and spectral data, either from survey flights or from satellites. We intend to model relationships between foliar mass and LIDAR data for sample trees, and then scale up this to foliar mass estimates for the entire LIDAR area.Similarly, we try to scale up chlorophyll concentrations in sample trees, by modelling a relationship between sample tree chlorophyll and hyper-spectral data. The estimates of foliar mass and chlorophyll concentrations are then aggregated to every 10x10 m pixel of a SPOT satellite scene which is also covered by airborne data, providing an up-scaled ground truth. If we are successful with this, it might be a starting point for developing a new nationwide forest health monitoring system in Norway.

Sammendrag

A method for determination of the climate gases CH4, CO2 and N2O in air samples and soil atmosphere was developed using GC-MS. The method uses straightforward gas chromatography (separation of the gases) with a mass spectrometric detector in single ion mode (specific determination).The gases were determined with high sensitivity and high sample throughput (18 samples h1). The LOD (3) for the gases were 0.10 L L1 for CH4, 20 L L1 for CO2 and 0.02 L L1 for N2O. The linear range (R2 = 0.999) was up to 500 L L1 for CH4, 4000 L L1 for CO2 and 80 L L1 for N2O. The samples were collected in 10 mL vials and a 5 L aliquot was injected on column.The method was tested against certified gas references, the analytical data gave an accuracy within 5% and a precision of 3%. The presence of 10% by volume of C2H2 (often used experimentally to prevent N2 formation from N2O) did not interfere with detection for the targeted trace gases.

Sammendrag

A home designed diffusion chamber was used during the isolation of fluoride from plant material. The chamber contained two beakers, one for the sample (milled plant material) and the other for the trapping solution (0.1M NaOH). Hexamethyldisiloxane (HMDS) in 3.5M perchloric acid was added into the sample beaker through a septum, after the chamber was closed.Fluoride in the sample reacts with HMDS and forms the volatile trimethylfluorosilane (TMFS), which is trapped and hydrolyzed to fluoride. The diffusion time was 2h and 20 samples were handled at the same time. The fluoride concentration was determined by a flow injection analysis (FIA) system using an ion selective electrode (about 50 samples/hour).The results by acid extraction were compared to the results obtained after an ashing/alkaline fusion. Both a certified sample of timothy grass (NIST 2695, high level) and more typical vegetation from forest were analyzed. For the timothy grass, the recovery increased from 48 to 84% when ashing/alkali fusion was used before the diffusion. However, higher recovery was not obtained by using ashing/alkaline fusion for the determination of fluoride in natural vegetation from forest. Acid extraction in combination with addition of HMDS was sufficient as pretreatment in these types of plant materials.The method was routinely used for the determination of fluoride both in research and forest monitoring.