Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Sammendrag
Deadwood represents a dynamic carbon pool in forest ecosystems where microbial decomposition causes fluxes of CO2 to the atmosphere through respiration and organic carbon to the soil through leakage and fragmentation. This study characterises different stages of deadwood of Norway spruce (Picea abies). 35 Norway spruce trees were sampled and categorized on a 0–5 decay scale. For the 14 trees in classes 0–3, two stem discs were collected from two heights. For the 21 trees in classes 4 and 5, a single sample per tree was taken, because decay was relatively uniform throughout the stem. The relative amount of hemicellulose and cellulose declined moderately from decay class 1 to 3 and substantially from decay class 3 to class 4 but small amounts were still present in decay class 5. The relative lignin proportion increased substantially from decay class 3 to 4 and dominated in decay class 5. Relative carbon content increased from 50 to 56% during the decomposition process due to the increasing accumulation of lignin residuals being a typical signature of brown rot decay. A laboratory experiment including three species of brown rot fungi verified decomposition close to 70% of Norway spruce biomass and resulted in 55% carbon content. This was similar to the carbon content in decay class 4 and 5. A novel approach is presented to quantify the carbon flux from deadwood to the soil. First, we calculated the residual proportion of carbon in decayed wood compared to the initial carbon content of live trees. Subsequently, we extended the calculation to determine the amount of remaining carbon from non-decayed wood that was transferred to the soil during each decay class. The approach showed that Norway spruce wood decomposition under field conditions transfers at least 39–47% of the initial wood carbon to the soil carbon pool, depending on soil type. This strengthens the previously under-communicated fact that the carbon flux from deadwood to soil is higher from brown rot decomposition in boreal forests than the corresponding carbon flux in temperate and tropical forests where deadwood is more influenced by white rot fungi.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Scots pine (Pinus sylvestris L.) is a commercially important forest tree species in many Eurasian countries. Its wood has been commonly utilized for production of construction timber. In Sweden, a breeding program was launched in 1950s to improve Scots pine trees to better suit industrial requirements. The emphasis was mainly put on improving stem volume, vitality, stem straightness and branching characteristics whilst wood quality was neglected. However, since some of the important wood quality traits are negatively correlated with the prioritized volume production, the continuation of such an approach could in a long run lead to irreversible deterioration of wood quality. In our study, we focused on wood quality traits that are relevant for construction timber – wood density, stiffness, strength, grain angle and sawn-board shape stability (crook, bow and twist). We linked wood quality traits nondestructively assessed on standing trees with those measured on sawn boards. We estimated narrow-sense heritabilities, genetic correlations and correlated responses to selection with the aim of identifying reliable techniques for wood quality assessment on standing trees and proposing suitable strategies for incorporating wood quality traits into the breeding program. We have concluded that standing-tree drilling resistance, acoustic velocity and grain angle are good predictors of wood density, wood stiffness & strength, and sawn-board twisting, respectively. Taking into account the long-term development on wood market, we are proposing an inclusion of wood density in the breeding program, in the way that it will be retained at the current levels rather than increased, which would also positively affect wood stiffness and strength. Furthermore, we are suggesting to consider grain angle as a breeding trait although more research is needed to unravel its underlying biological mechanism.
Sammendrag
Forest tree seed orchards are artificial populations of genetically superior individuals that play a crucial role in the production of high-quality seeds for reforestation and afforestation programs worldwide. In the pre-genetic-marker era, seed orchards were assumed to act as closed, panmictic populations with equal reproductive success among parents and with no gene flow from external pollen sources. Meeting these assumptions would ensure that the genetic gain attained by breeding would be efficiently transmitted to the next generation, i.e., into seed orchard crops. Many studies published to date have shown that parental reproductive success may be highly variable and that gene flow from undesired pollen sources, a.k.a. pollen contamination, can be substantial. Since the realized genetic gain can be considerably reduced, it is important to monitor mating patterns in seed orchards and thereby control the genetic quality (gain and diversity) of their crops. With the development of genetic markers, the theoretical assumptions as well as the efficiency of measures proposed to enhance desired crosses and reduce pollen contamination in seed orchards could be verified. First attempts to unravel mating patterns and quantify pollen contamination in seed orchards date back to the late 1970s when allozyme markers were introduced. Allozymes remained in use for over two decades, but due to their low resolution, they were gradually replaced with much more powerful microsatellites (SSRs), which, along with the rapid evolution of various statistical approaches, were capable of providing a much more detailed picture of seed orchards’ mating dynamics through pedigree reconstruction. Recently, SNP arrays that have been (and are being) developed for a number of commercially important forest tree species make it possible to affordably and rapidly screen seed orchard seed lots and evaluate the orchards’ genetic efficiency.
Sammendrag
Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha. In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Annika M. Felton Hilde Karine Wam Zbigniew Borowski Aksel Granhus Laura Juvany Juho Matala Markus Melin Märtha Wallgren Anders MårellSammendrag
Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed the literature (published 2000–2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation), and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use, and population dynamics. We targeted deer species that inhabit relevant biomes in North America, Europe, and Asia: moose, roe deer, wapiti, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou, and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (e.g., population density and predation) on how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type, and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall, and snow.
Forfattere
Annika M. Felton Hilde Karine Wam Zbigniew Borowski Aksel Granhus Laura Juvany Canovas Juho Matala Markus Melin Märtha Wallgren Anders MårellSammendrag
Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short-term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. Because responses by deer to climate change may take many paths - both positive and negative - it is generally difficult to predict outcomes. Here we take the first step to understanding these complexities by systematically synthesizing the literature (published 2000-2022) regarding direct effects of temperature, rainfall and snow on deer inhabiting boreal and temperate regions of the northern hemisphere. Our review (based on N= 219 papers) shows that while many deer populations will likely benefit from warmer winters, hotter and drier summers may exceed their physiological tolerances, causing northwards shifts in distributional ranges. We found support for deer expressing both phenotypic and behavioral plasticity in response to climate variability at different temporal and spatial scales. We identified 20 general patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the importance of local variables for any predictions of future responses by a given deer population. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type and wetter autumns.
Forfattere
Fride Høistad Schei Mie Prik Arnberg John-Arvid Grytnes Maren Stien Johansen Jørund Johansen Anna Birgitte Milford Anders Røynstrand Mari Mette TollefsrudSammendrag
Climate change and human activities have accelerated the spread of non-native species, including forest pests and pathogens, significantly contributing to global biodiversity loss. Pathogens pose a significant threat to forest ecosystems due to a lack of coevolution with native hosts, resulting in ineffective defence mechanisms and severe consequences for the affected tree species. Ash dieback, caused by the fungus Hymenoscyphus fraxineus, is a relatively new invasive forest pathogen threatening ash (Fraxinus excelsior) with mortality rates in northern Europe reaching up to 80 %. The loss of ash due to dieback has severe ecological implications, potentially leading to an extinction cascade as ash provides crucial habitats and resources for many organisms. Despite this, the consequences of ash dieback on associated communities are largely unknown. To address this, we analysed changes in species richness, vegetation structure, and composition in 82 permanent vegetation plots across 23 Norwegian woodlands. We compared data collected before and 10–14 years after the emergence of ash dieback. In these woodlands, ash significantly declined in cover, leading to changes in tree species composition and facilitating the establishment of other woody tree species like hazel (Corylus avellana) and the invasive species sycamore (Acer pseudoplatanus). Despite these changes in the tree species composition, no significant alterations were observed in the understory plant community, indicating a degree of ecosystem resilience or a lagging community response. At this point, and with our focus on the vascular plants, we do not find support for cascading effects due to ash dieback. However, our findings demonstrate that one invasive species is facilitating the expansion of another, raising concerns about potential ecological imbalance and cascading effects in the future.