Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Understanding the factors that determine species’ resistance to environmental change is of utmost importance for biodiversity conservation. Here we investigated how the abundances of marshland species are determined by niche properties and functional traits. We re-surveyed 150 vegetation plots that were first surveyed in 1973 in order to explore species abundance changes over time. We found that the mean water level in the habitats of most studied species decreased significantly from 1973 to 2012. Nine of 17 target species were identified as abundance decreasing species and the other eight as abundance increasing species. The comparisons of seven plant characteristics (niche position water level, plant height, and five leaf traits) showed that the decreasing species had a significantly higher value of optimum water level and marginally significantly lower leaf N contents and specific leaf area (SLA) than those in increasing species. The stepwise regression analysis showed that optimum water level and leaf N were the best predictors of abundance changes of marsh plant species, as well as that the effect of optimum water level was stronger than that of leaf N. Our findings demonstrated that niche properties may be important for forecasting changes in wetland plant communities over time.

Til dokument

Sammendrag

Questions Have species richness and composition in subarctic vegetation changed over the past ca. 90 years? Are compositional shifts linked to changes in land management or climate? Are observed changes associated with vegetation type, life form, or habitat preference? Location Rybachy and Sredny Peninsulas, NW Russia. Methods We resurveyed vegetation ca. 90 years after the first sampling in 1927–1930 to study changes in species richness, abundance and composition. Because of missing plot‐related environmental measurements we used a weighted averaging approach calculating relative changes in species‐specific optimum values for different environmental gradients represented by species indicator values to identify compositional change in relation to the environment. Changes in species composition were visualised using detrended correspondence analyses. Significances of observed changes in species richness and frequency were evaluated using restricted permutation tests. A χ2 test was used to test if observed changes in abundances were related to species’ life form and habitat preferences. Results Species composition has changed significantly over the past ca. 90 years, as indicated by significant changes in species’ frequencies and values of optima for the environmental gradients temperature, moisture, nutrients and light. Species richness decreased significantly, in particular in nitrophilous and wet growing vegetation. Species typical for grazed grasslands and meadows and species of wet habitats became less abundant, while dwarf shrubs and forest species increased. Conclusions Land abandonment, in combination with climate change, is likely to have caused the observed changes in the subarctic vegetation of NW Russia. Shifts in the species dominance ratios and interspecific competition (e.g. for reallocated nutrients) after land abandonment may have been promoted by the subsequent change towards a warmer climate, facilitating the regrowth of previously open meadows with grazing‐intolerant tall herbs, forest herbs and dwarf shrubs. This study illustrates clearly the long‐term effects of land‐use change, the consequences of which are still visible even after almost one century in the subarctic.

Til dokument

Sammendrag

Questions Which environmental variables are most important in determining plant species composition in subarctic springs? Do observed patterns differ between typical wetland and general matrix‐derived species? Location Helocrenic (seepage) springs, Northern Norway. Methods We sampled 49 helocrenic spring sites, measuring environmental variables (water temperature, water pH, electrical conductivity, discharge volume, geographic position) and recording all species present. We performed a partial canonical correspondence analysis (pCCA) to determine the relative importance of water quality, spatial, and climatic variables for patterns in species composition and to compare the differences in these patterns between wetland and matrix‐derived species. Results We found that climatic and water quality variables were almost equally important in determining species composition in subarctic springs, with climatic variables explaining 26.62% of variation in species composition and water quality variables explaining 26.14%. Spatial variables explained the least variation (21.53%). When looking at the variables individually, altitude (10.93%) and mean summer temperature (9.25%) explained the most variation. The trend was the same for matrix‐derived species and wetland species, with climatic variables explaining the most variation (matrix‐derived: 27.26%; wetland: 24.42%), followed by water quality (matrix‐derived: 26.40%; wetland: 24.13%) and spatial variables (matrix‐derived: 24.87%; wetland: 16.27%). The main difference between matrix‐derived species and typical wetland species was that the spatial variables explained less variation for wetland species. Conclusions The close relationship of species composition (total vegetation as well as separated into wetland and matrix‐derived species) with climatic and water quality conditions indicates a sensitivity of subarctic springs to future climate change. In combination with altitude, which was found to be the most important individual variable, it is likely that the future distribution of spring species tracking climate change will be limited by the occurrence of suitable spring habitats, especially at high altitudes.

Til dokument

Sammendrag

Beiting og slått har skapt noen av de mest artsrike økosystemene i Nord-Europa, men slike tradisjonelle driftsformer har blitt mindre vanlige i det 20. århundre. Denne endringen er en viktig drivkraft for påfølgende gjengroing som kan ha dramatiske konsekvenser for det biologiske mangfoldet, kanskje spesielt i kombinasjon med klimaendringer.

Sammendrag

In this educational tool kit, your pupils will learn about the amazing and sometimes odd ways animals have adapted to living, especially in polar extreme environments. This is part 1 of a series of three tool kits on the topic. Part 1 gives an introduction and explains principles of evolutionary adaptations in view of climate change. Part 2 is about animals in the taiga, while part 3 is about animals on the tundra.

Sammendrag

In this educational tool kit, your pupils will learn about why and where there is a region called Fennoscandia. We explore cultures for the outdoors that are shared between all the countries of the region. In role play, pupils will explore how one, by learning about another’s culture, one can more easily accept it even when one does not like it.

Sammendrag

Do you know what happens when an exotic species comes to a new place, where it does not belong? Can the planet be completely invaded by exotic species? What exactly is an exotic species? In this learning package, we look at how invasive species are a growing problem and how they can affect the environment, other species and even the entire global bioeconomy.

Sammendrag

I denne læringspakka vil elevene lære om hvorfor og hvor det finnes en region vi kaller Fennoskandia. Vi forteller om kulturer for utendørsliv, som man finner på tvers av landegrensene her. I en egen utforsker-lab vil elevene utforske livsmestring: at ved å lære om andres kultur, kan vi lettere akseptere den selv om vi ikke liker den.