Til dokument

Sammendrag

Accurate field plot data on forest attributes are crucial in area-based forest inventories assisted by airborne laser scanning, providing an essential reference for calibrating predictive models. This study assessed how sample tree selection methods and plot data calculation methods affect the accuracy of field plot values of timber volume, Lorey’s mean height, and dominant height. We used data obtained from 12 420 circular sample plots of 250 m2, measured as part of the Norwegian national forest inventory and 45 local forest management inventories. We applied Monte Carlo simulations by which we tested various numbers of sample trees, methods to select sample trees, and methods to calculate plot-level values from tree-level measurements. Accuracies of plot values were statistically significantly affected by the number of sample trees, sample tree selection method, and calculation method. Obtained values of root mean square error ranged from 5% to 16% relative to the mean observed values, across the factors studied. Accuracy improved with increasing numbers of sample trees for all forest attributes. We obtained greatest accuracies by selecting sample trees with a probability proportional to basal area, and by retaining field-measured heights for sample trees and using heights predicted with a height-diameter model for non-sample trees. This study highlights the importance of appropriate sample tree selection methods and calculation methods in obtaining accurate field plot data in area-based forest inventories.

Til dokument

Sammendrag

Abstract The site index (SI) describes a site’s potential to produce wood volume. Accurate information on SI in young forests is essential for planning thinning operations and projecting future growth and yield. For tree species that form annual branch whorls, information on interwhorl distances along the stem may be used to determine the SI in young forests. Branch whorls, and consequently tree height growth trajectories, can be detected automatically using deep learning on very dense laser scanning data. In the current study, we demonstrate this approach in a case study in a young Norway spruce forest. We trained a pose estimation Convolutional Neural Network and detected branch whorls of 97 dominant trees in 54 plots scanned with mobile laser scanning data. We predicted SI determined from detected branch whorls in three different sections of each tree, selected in the stem height range between 2.5 and 8 m: all whorls, the lowest six whorls, and whorls selected with an automatic selection procedure. We compared the obtained SI to the SI determined from field-measured branch whorls. Obtained values of precision, recall, and F1 score for the branch whorl detection were 0.66, 0.58, and 0.62, respectively. Values of root mean square error and mean differences between reference and predicted SI ranged between 19.8%–20.9% and −3.6%–4.0%, respectively. Although the tested approach showed potential for SI determination in young forests, the obtained errors were large. This was due to detection errors and high sensitivity to small changes in height increment. These issues highlight the need for further research to improve branch whorl detection accuracy and address challenges associated with determining the SI in young forests.