Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Juliana D. Klein Tamaryn A. Asbury Charlene da Silva Kelvin L. Hull Matthew L. Dicken Enrico Gennari Simo Maduna Aletta E Bester-van der MerweSammendrag
The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species’ distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.
Forfattere
Tatsiana Espevig Kristine Sundsdal Trygve S. Aamlid Jo Anne Crouch Karin Normann Marina Usoltseva Kate Entwistle Torfinn Torp May Bente BrurbergSammendrag
Dollar spot, caused by at least five Clarireedia species (formerly Sclerotinia homoeocarpa F. T. Benn.), is one of the economically most important turfgrass diseases worldwide. The disease was detected for the first time in Scandinavia in 2013. There is no available information from Scandinavian variety trials on resistance to dollar spot in turfgrass species and cultivars (http://www.scanturf.org/). Our in vitro screening (in glass vials) of nine turfgrass species comprising a total of 20 cultivars showed that on average for ten Clarireedia isolates of different origin, the ranking for dollar spot resistance in turfgrass species commonly found on Scandinavian golf courses was as follows: perennial ryegrass = slender creeping red fescue > strong creeping red fescue > Kentucky bluegrass = velvet bentgrass > colonial bentgrass = Chewings fescue ≥ creeping bentgrass = annual bluegrass. Significant differences in aggressiveness among Clarireedia isolates of different origin were found in all turfgrass species except annual bluegrass (cv. Two Putt). The U.S. C. jacksonii isolate MB-01 and Canadian isolate SH44 were more aggressive than C. jacksonii isolates from Denmark and Sweden (14.10.DK, 14.15.SE, and 14.16.SE) in velvet bentgrass and creeping bentgrass. The Swedish isolate 14.112.SE was generally more aggressive than 14.12.NO despite the fact that they most likely belong to the same Clarireedia sp. The U.S. C. monteithiana isolate RB-19 had similar aggressiveness as the Scandinavian C. jacksonii isolates, but was less aggressive than two U.S. C. jacksonii isolates MB-01 and SH44. Thus, aggressiveness of Clarireedia isolates was more impacted by their geographic origin and less by species of the isolate and/or the host turfgrass species.
Forfattere
Trygve S. Aamlid Ellen Johanne Svalheim Hans Martin Hanslin Kristine Sundsdal Geir Knutsen Trond Olav Pettersen Ove Hetland Atle Beisland Elise Krey PedersenSammendrag
I forbindelse med prosjektet ‘Fra grasmark til blomstereng’ mottok NIBIO i 2017-2020 støtte fra Aust- og Vest Agder (nå Agder) kompetansefond til å utvikle NIBIO Landvik til ‘Norsk kompetanse-senter for blomstereng og naturfrø’. Prosjektet bestod av to deler, nemlig (1) Innsamling av lokale frøpopulasjoner og utvikling av frøavlsteknikk for urter til blomstereng, og (2) Utvikling av metoder for omdanning av monoton grasmark til artsrik blomstereng gjennom innsåing av norsk frøblanding. I del 1 av prosjektet ble det fra 2017 til 2019 samla inn frø og etablert oppformeringsfelt med rundt 60 populasjoner av 30 naturengarter typiske for slåtteenger på Sørøstlandet. Flesteparten av oppformeringsfelta lå på Landvik, men et økende antall kontraktfrøavlere ble også engasjert i produksjonen. Det ble utført et stort antall frøavlsforsøk, spesielt med ulike frøhøstingsmetoder. Salget av blomsterengfrø (eksl. grasfrø) økte fra 7 kg i 2018 til 50 kg i 2019 og 110 kg i 2020. I del 2 av prosjektet ble det i 2017 etablert seks forsøksfelt fra Grimstad i sør til Nannestad i nord for å finne fram til optimal skjøtsel før og etter innsåing av norsk blomsterengblanding i eksisterende monoton grasmark. Forsøka viste at det sikreste tiltaket for å redusere konkurransen fra graset og øke tilslaget ved såing er å slå grasmarka to ganger pr sesong med raking/fjerning av avklippet. Dette bør gjennomføres i minst to år før og minst to år etter innsåing av blomsterengfrøet. Gjennom prosjektet har det blitt holdt mange foredrag og det har vært et stort antall medie-oppslag. Vi vurderer at målet for prosjektet er oppnådd og at NIBIO Landvik pr 1.1. 2021 er godt etablert som ‘Norsk kompetansesenter of blomstereng og naturfrø’.
Forfattere
Stephen Joseph Annette L. Cowie Lukas Van Zwieten Nanthi Bolan Alice Budai Wolfram Buss Maria Luz Cayuela Ellen R. Graber James A. Ippolito Yakov Kuzyakov Yu Luo Yong Sik Ok Kumuduni N. Palansooriya Jessica Shepherd Scott Stephens Zhe (Han) Weng Johannes LehmannSammendrag
We synthesized 20 years of research to explain the interrelated processes that determine soil and plant responses to biochar. The properties of biochar and its effects within agricultural ecosystems largely depend on feedstock and pyrolysis conditions. We describe three stages of reactions of biochar in soil: dissolution (1–3 weeks); reactive surface development (1–6 months); and aging (beyond 6 months). As biochar ages, it is incorporated into soil aggregates, protecting the biochar carbon and promoting the stabilization of rhizodeposits and microbial products. Biochar carbon persists in soil for hundreds to thousands of years. By increasing pH, porosity, and water availability, biochars can create favorable conditions for root development and microbial functions. Biochars can catalyze biotic and abiotic reactions, particularly in the rhizosphere, that increase nutrient supply and uptake by plants, reduce phytotoxins, stimulate plant development, and increase resilience to disease and environmental stressors. Meta-analyses found that, on average, biochars increase P availability by a factor of 4.6; decrease plant tissue concentration of heavy metals by 17%–39%; build soil organic carbon through negative priming by 3.8% (range −21% to +20%); and reduce non-CO2 greenhouse gas emissions from soil by 12%–50%. Meta-analyses show average crop yield increases of 10%–42% with biochar addition, with greatest increases in low-nutrient P-sorbing acidic soils (common in the tropics), and in sandy soils in drylands due to increase in nutrient retention and water holding capacity. Studies report a wide range of plant responses to biochars due to the diversity of biochars and contexts in which biochars have been applied. Crop yields increase strongly if site-specific soil constraints and nutrient and water limitations are mitigated by appropriate biochar formulations. Biochars can be tailored to address site constraints through feedstock selection, by modifying pyrolysis conditions, through pre- or post-production treatments, or co-application with organic or mineral fertilizers. We demonstrate how, when used wisely, biochar mitigates climate change and supports food security and the circular economy.
Forfattere
S. Higgins Z. Kadziuliene A. Paz E. Mason W. Vervuurt A. Astover N. Borchard A. Jacobs P. Laszio D. Wall G. A. Trinchera Alice Budai R. Mano S. Thorma J. M. Rok B. Sanchez J. Hirte S. MadenogiuSammendrag
Deliverable 2.13. Stocktake study and recommendations for harmonizing methodologies for fertilization guidelines
Forfattere
John Barlindhaug Thomas Jolstad Henriksen Kolbjørn Akervold Hanne Lerche Raadal Helen French Ketil Haarstad Tangen Mina Ester BlooemSammendrag
Det er ikke registrert sammendrag
Forfattere
Claire CoutrisSammendrag
Søkelyset på utfordringene med plast og forsøplingsproblematikken har sammen med nye krav og forbud fra EU, ført til at mange produsenter ønsker seg gode alternativer til fossil plast. Et resultat av dette er at stadig flere velger bionedbrytbar plast i emballasje eller som alternativ i landbruket. Men hva skjer med den bionedbrytbare plasten? Enten ute på jordet eller i kommunale biokomposteringsanlegg. Blir den brutt ned? Det er noe Grønt Punkt Norge ønsker bedre svar på. Derfor har vi vært initiativtaker til et 3-årig prosjekt hvor NIBIO skal forske på dette. Prosjektet er nå halvveis og onsdag 24. mars vil forsker Claire Coutris fra NIBIO dele noen foreløpige resultater.
Forfattere
Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Forfattere
Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Forfattere
Claire CoutrisSammendrag
Det er ikke registrert sammendrag