Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Det er hovedkonklusjonen i en risikovurdering Vitenskapskomiteen for mat og miljø (VKM) har gjort for Miljødirektoratet. For biearter som er avhengige av én eller få plantearter for å overleve, vurderes risikoen som høyere (medium) på grunn av mulig konkurranse med honningbier om ressursene. Dette gjelder arter som rødknappsandbie. Også for humler i ensartede landskaper med begrensede blomsterressurser vurderes risikoen som medium. Oppdrag På oppdrag fra Miljødirektoratet har VKM oppsummert den tilgjengelige faglitteraturen om sammenhenger mellom hold av honningbier og deres effekter på ville pollinerende insekter, og vurdert om birøkt kan utgjøre en risiko for ville pollinatorer i Norge. VKM har også identifisert og vurdert effekten av mulige risikoreduserende tiltak. Risiko VKM har identifisert tre potensielle farer knyttet til hold av honningbier og vurdert risikoen for negative effekter på ville pollinatorer som følge av disse: Konkurranse om blomsterressurser. VKM vurderer at hold av honningbier medfører medium risiko for enkelte biearter som er avhengige av én eller få plantearter for å overleve, som rødknappsandbie og humler i ensartede landskaper med begrensede blomsterressurser. Dette skyldes mulig konkurranse om disse ressursene. For alle andre ville pollinerende insekter i Norge, vurderes risikoen fra konkurranse om blomsterressurser som lav. Spredning av patogener og parasitter. VKM vurderer at risikoen for spredning av patogener og parasitter til ville pollinerende insekter som følge av hold av honningbier er lav, delvis som følge av dagens høye hygienestandarder i norsk birøkt. Indirekte effekter som følge av endringer i plantesamfunn og predatorpopulasjoner. VKM vurderer at risikoen for at honningbier påvirker sammensetningen av plantesamfunn på en slik måte at tilgjengeligheten av blomsterressurser for ville pollinatorer reduseres, er lav. VKM vurderer også at risikoen for at predatorer av honningbier påvirker ville pollinatorer negativt er lav, da geithams er den eneste potensielle predatoren, og forekommer i lave antall og innenfor begrensede områder. Risikoreduserende tiltak VKM har identifisert og vurdert effekten av tre typer risikoreduserende tiltak som kan redusere den mulige negative effekten hold av honningbier har på ville pollinatorer i Norge: Forvaltning av blomsterressurser. Å redusere antallet honningbier eller øke mengden blomsterressurser i et område, kan minske konkurransen om blomsterressurser. Etablering av blomsterstriper og skjøtsel av stedegen flora er mulige tiltak. Kartlegging av blomsterressurser kan brukes til å anslå bæreevnen i et område og veilede plasseringen av bikuber. Fremme god helse hos honningbier. God helse blant honningbier reduserer risikoen for spredning av sykdommer og parasitter til ville pollinatorer. Risikoen for spredning av sykdommer fra honningbier til ville pollinatorer vurderes som lav i Norge, som følge av godt hygienearbeid blant norske birøktere, og effektiv overvåking fra Mattilsynet. Økt kunnskap om blomsterressurser og behovene til ville pollinatorer. Økt kunnskap om tilgjengeligheten av blomsterressurser og fødebehovene til ville pollinatorer vil kunne veilede plassering av bikuber og slik redusere potensialet for konkurranse mellom honningbier og ville pollinerende insekter.

2023

Til dokument

Sammendrag

Questions Field-based ecosystem mapping is prone to observer bias, typically resulting in a mismatch between maps made by different mappers, that is, inconsistency. Experimental studies testing the influence of site, mapping scale, and differences in experience level on inconsistency in field-based ecosystem mapping are lacking. Here, we study how inconsistencies in field-based ecosystem maps depend on these factors. Location Iškoras and Guollemuorsuolu, northeastern Norway, and Landsvik and Lygra, western Norway. Methods In a balanced experiment, four sites were field-mapped wall-to-wall to scales 1:5000 and 1:20,000 by 12 mappers, representing three experience levels. Thematic inconsistency was calculated by overlay analysis of map pairs from the same site, mapped to the same scale. We tested for significant differences between sites, scales, and experience-level groups. Principal components analysis was used in an analysis of additional map inconsistencies and their relationships with site, scale and differences in experience level and time consumption were analysed with redundancy analysis. Results On average, thematic inconsistency was 51%. The most important predictor for thematic inconsistency, and for all map inconsistencies, was site. Scale and its interaction with site predicted map inconsistencies, but only the latter were important for thematic inconsistency. The only experience-level group that differed significantly from the mean thematic inconsistency was that of the most experienced mappers, with nine percentage points. Experience had no significant effect on map inconsistency as a whole. Conclusion Thematic inconsistency was high for all but the dominant thematic units, with potentially adverse consequences for mapping ecosystems that are fragmented or have low coverage. Interactions between site and mapping system properties are considered the main reasons why no relationships between scale and thematic inconsistency were observed. More controlled experiments are needed to quantify the effect of other factors on inconsistency in field-based mapping.

Til dokument

Sammendrag

Didemnum vexillum is colonial sea squirt, a marine species which originates from the northwest Pacific; it was first recorded in Norway in November 2020. Didemnum vexillum is an alien species, meaning that it is a species that has been transferred from its original region to other regions of the world through human activity, and it had not previously been recorded in Norwegian waters. The species is regarded as having great invasive potential and having strong negative ecological effects on biodiversity. It is also considered to pose a risk to marine industries such as shipping and aquaculture, with possible major negative economic impacts.

Til dokument

Sammendrag

VKM has evaluated the risk to biodiversity from allowing private import and keeping of the Northern Cardinal as a caged bird in Norway, for birds acquired through the bird trade. VKM has reviewed the invasion ecology of non-native birds in general and of the Northern Cardinal specifically. The assessment includes evaluation of various mechanisms that invasive birds generally have a negative impact through, and includes competition, hybridization, spread of pathogens and interactions with other alien species in Norway. VKM has also evaluated two different scenarios establishment and how climate change can influence both the negative impact and the likelihood of establishment. Overall, VKM finds that there is low risk in regards negative effects on biodiversity in Norway in regard to import and keeping of the Northern Cardinal.

Til dokument

Sammendrag

VKM has evaluated to what extent keeping of cats pose a risk to biodiversity in Norway. Risks were assessed separately for threats to biodiversity from direct predation, indirect (non-lethal) effects, competition with other wildlife and spread of infectious organisms. VKM also assessed the risk of reduced animal welfare related to the keeping of domestic cats, both for the cats and their prey. In addition, VKM has assessed a range of risk-reducing measures aimed at minimizing the risk for negative impacts on biodiversity and animal welfare. Overall, VKM find that the risk of negative impact on vulnerable birds and red-listed mammalian species are high under certain conditions. VKM also find that there is a considerable risk associated with increased spread of infectious organisms from cats to wildlife and other domestic species. Some of these infectious organisms may also infect humans. With respect to mitigation measures, VKM concludes that measures focused on limiting cats’ access to prey populations are likely to yield the most positive outcomes in terms of mitigating the adverse impact on biodiversity.

Til dokument

Sammendrag

Metangassutslipp fra sau, storfe og geit utgjør rundt fire prosent av det totale norske klimagassutslippet. Mange av beregningene som utgjør grunnlaget for dette tallet, er imidlertid basert på utenlandske data, og det er flere forhold som ikke er tatt hensyn til.

Til dokument

Sammendrag

Key words: apiculture, biological control, Norwegian Environment Agency, Norwegian Scientific Committee for Food and Environment, predatory mites, risk assessment, varroa Introduction The Norwegian Environment Agency (NEA) have asked the Norwegian Scientific Committee for Food and Environment for an assessment of adverse impacts on biodiversity concerning import and release of the predatory mite Stratiolaelaps scimitus as measure against varroa mites (Varroa destructor) in apiaries. The predatory mite is already in use in Norwegian greenhouses and polytunnels as a biological control agent against dark-winged fungus gnats in a various of plant cultures. The NEA has received an application for a new type of use: to combat varroa mites in apiaries. Background Varroa destructor (the varroa mite) is a species of parasitic mite that feeds externally on honeybees; it is considered one of the major threats to beekeeping world-wide due to its parasitic behaviour and because it acts as a vector for several viral and bacterial bee pathogens. Beekeepers in North America have begun experimenting with introducing Stratiolaelaps scimitus, a commercially available predaceous mite originally used for biocontrol in greenhouses and polytunnels, to control varroa mites, and several studies on the use of the mite in this context have been published recently. The Norwegian Environment Agency has asked VKM to assess the risk to biological diversity in Norway associated with this new use of S. scimitus, and to assess the effects of climate change on any risks that are proposed. Stratiolaelaps scimitus is a tiny (0.5 mm), soil-dwelling predaceous mite that in nature feeds on a wide variety of soil invertebrates, including fly larvae, nematodes, nymphs of thrips, potworms (oligochaetes), springtails, and other mites. For over three decades, Stratiolaelaps scimitus has been produced commercially and the species is now used globally for biological control. The mite is applied to control a wide variety of organisms harmful to food production or to the production of ornamental plants, but especially to combat infestations of fungus gnat larvae, spider mites, flower thrips, and certain plant-feeding nematodes. The species is already used as a biocontrol agent in Norway in greenhouses, open plastic polytunnels used for protecting crops, and in various indoor plantings and fungiculture. Methods VKM established a project group with expertise in entomology, invasion ecology, honeybee behaviour and ecology, and risk analysis of biological control agents. The group conducted systematic literature searches and scrutinized the relevant literature that was found. In the absence of Norwegian studies, VKM relied on literature from other countries. Results and conclusions This VKM assessment concludes with medium confidence that introducing S. scimitus for use in beehives would not significantly increase the probability of establishment and spread of S. scimitus above that of its current use. We point out that there is no evidence that continuous use of S. scimitus in Norway, over decades, has led to its establishment outside of enclosures, including open polytunnels. The optimal temperature for development and reproduction is far higher than what is normally observed in Norway (~28 °C). Although lethal temperature has been reported to be as low as –5.2 °C, we still conclude that S. scimitus would not be able to establish permanent populations in Norway, not even in the southern part of the country as such temperatures are expected to occur in some years throughout the country. Future climate change is not believed to alter this conclusion, since periods with lethally cold temperatures are expected to still occur in the future.

2022

Til dokument

Sammendrag

The alpine treeline ecotone is expected to move upwards in elevation with global warming. Thus, mapping treeline ecotones is crucial in monitoring potential changes. Previous remote sensing studies have focused on the usage of satellites and aircrafts for mapping the treeline ecotone. However, treeline ecotones can be highly heterogenous, and thus the use of imagery with higher spatial resolution should be investigated. We evaluate the potential of using unmanned aerial vehicles (UAVs) for the collection of ultra-high spatial resolution imagery for mapping treeline ecotone land covers. We acquired imagery and field reference data from 32 treeline ecotone sites along a 1100 km latitudinal gradient in Norway (60–69°N). Before classification, we performed a superpixel segmentation of the UAV-derived orthomosaics and assigned land cover classes to segments: rock, water, snow, shadow, wetland, tree-covered area and five classes within the ridge-snowbed gradient. We calculated features providing spectral, textural, three-dimensional vegetation structure, topographical and shape information for the classification. To evaluate the influence of acquisition time during the growing season and geographical variations, we performed four sets of classifications: global, seasonal-based, geographical regional-based and seasonal-regional-based. We found no differences in overall accuracy (OA) between the different classifications, and the global model with observations irrespective of data acquisition timing and geographical region had an OA of 73%. When accounting for similarities between closely related classes along the ridge-snowbed gradient, the accuracy increased to 92.6%. We found spectral features related to visible, red-edge and near-infrared bands to be the most important to predict treeline ecotone land cover classes. Our results show that the use of UAVs is efficient in mapping treeline ecotones, and that data can be acquired irrespective of timing within a growing season and geographical region to get accurate land cover maps. This can overcome constraints of a short field-season or low-resolution remote sensing data.