Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

This study was designed to analyze the chemical composition and in vitro rumen fermentation of eight seaweed species (Brown: Alaria esculenta, Laminaria digitata, Pelvetia canaliculata, Saccharina latissima; Red: Mastocarpus stellatus, Palmaria palmata and Porphyra sp.; Green: Cladophora rupestris) collected in Norway during spring and autumn. Moreover, the in vitro ruminal fermentation of seventeen diets composed of 1:1 oat hay:concentrate, without (control diet) or including seaweeds was studied. The ash and N contents were greater (p < 0.001) in seaweeds collected during spring than in autumn, but autumn-seaweeds had greater total extractable polyphenols. Nitrogen in red and green seaweeds was greater than 2.20 and in brown seaweeds, it was lower than 1.92 g/kg DM. Degradability after 24 h of fermentation was greater in spring seaweeds than in autumn, with Palmaria palmata showing the greatest value and Pelvetia canaliculata the lowest. Seaweeds differed in their fermentation pattern, and autumn Alaria esculenta, Laminaria digitata, Saccharina latissima and Palmaria palmata were similar to high-starch feeds. The inclusion of seaweeds in the concentrate of a diet up to 200 g/kg concentrate produced only subtle effects on in vitro ruminal fermentation.

Til dokument Til datasett

Sammendrag

Ruminant fodder production in agricultural lands in latitudes above the Arctic Circle is constrained by short and hectic growing seasons with a 24-hour photoperiod and low growth temperatures. The use of remote sensing to measure crop production at high latitudes is hindered by intrinsic challenges, such as a low sun elevation angle and a coastal climate with high humidity, which influences the spectral signatures of the sampled vegetation. We used a portable spectrometer (ASD FieldSpec 3) to assess spectra of grass crops and found that when applying multivariate models to the hyperspectral datasets, results show significant predictability of yields (R2 > 0.55, root mean squared error (RMSE) < 180), even when captured under sub-optimal conditions. These results are consistent both in the full spectral range of the spectrometer (350–2500 nm) and in the 350–900 nm spectral range, which is a region more robust against air moisture. Sentinel-2A simulations resulted in moderately robust models that could be used in qualitative assessments of field productivity. In addition, simulation of the upcoming hyperspectral EnMap satellite bands showed its potential applicability to measure yields in northern latitudes both in the full spectral range of the satellite (420–2450 nm) with similar performance as the Sentinel-2A satellite and in the 420–900 nm range with a comparable reliability to the portable spectrometer. The combination of EnMap and Sentinel-2A to detect fields with low productivity and portable spectrometers to identify the fields or specific regions of fields with the lowest production can help optimize the management of fodder production in high latitudes.

Sammendrag

Det er helt vanlig å kle på hestene i Norge, som i resten av Nord Europa. De fleste hesteeierne har flere dekken til hver hest, tilpasset ulike værforhold og temperaturer. Men trenger de det? Nå har forskerne trent opp hestene til å svare for seg, og de er tydelige på hva de foretrekker.