Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.

Til dokument

Sammendrag

Vermicomposts and composts prepared from sewage sludge digestate and additives (spent mushroom compost, straw, biochar) after 43 days pre-composting followed by 90 days vermicomposting with Eisenia fetida or by compost maturing were investigated regarding the potentially toxic element (PTE) As, Co, Cr, Cu, Mo, Ni, Pb and Zn contents. The average increment in the total PTE concentration for the entire process was ten times higher (104 %) compared to the increment solely in the composting or vermicomposting (9.3 and 9.5 %, respectively) after pretreatment. Compared to the untreated digestate the As and Co concentrations in the final mixtures were 26 and 51 % higher, respectively while for the other PTEs 26 ± 9 % average decrease was observed. Total PTE content was the same in composts and vermicomposts. Average PTE bioavailability (water soluble/total concentration) was statistically the same in vermicomposts (2.5) and composts (2.7), but lower in mixtures with biochar (2.5) than without it (2.8).

Sammendrag

The large pine weevil (Hylobius abietis) is a major regeneration pest in commercial forestry. Pesticide application has historically been the preferred control method, but pesticides are now being phased out in several countries for environmental reasons. There is, thus, a need for alternative plant protection strategies. We applied methyl jasmonate (MeJA), salicylic acid (SA) or oxalic acid (OxA) on the stem of 2-year-old Norway spruce (Picea abies) plants to determine effects on inducible defenses and plant growth. Anatomical examination of stem cross-sections 9 weeks after application of 100 mM MeJA revealed massive formation of traumatic resin ducts and greatly reduced sapwood growth. Application of high concentrations of SA or OxA (500 and 200 mM, respectively) induced much weaker physiological responses than 100 mM MeJA. All three treatments reduced plant height growth significantly, but the reduction was larger for MeJA (~55%) than for SA and OxA (34-35%). Lower MeJA concentrations (5-50 mM) induced comparable traumatic resin duct formation as the high MeJA concentration but caused moderate (and non-significant) reductions in plant growth. Two-year-old spruce plants treated with 100 mM MeJA showed reduced mortality after exposure to pine weevils in the field, and this enhanced resistance-effect was statistically significant for three years after treatment.

Til dokument

Sammendrag

Biochar is a carbon (C)-rich material produced from biomass by anoxic or oxygen-limited thermal treatment known as pyrolysis. Despite substantial gaseous losses of C during pyrolysis, incorporating biochar in soil has been suggested as an effective long-term option to sequester CO2 for climate change mitigation, due to the intrinsic stability of biochar C. However, no universally applicable approach that combines biochar quality and pyrolysis yield into an overall metric of C sequestration efficiency has been suggested yet. To ensure safe environmental use of biochar in agricultural soils, the International Biochar Initiative and the European Biochar Certificate have developed guidelines on biochar quality. In both guidelines, the hydrogen-to-organic C (H/Corg) ratio is an important quality criterion widely used as a proxy of biochar stability, which has been recognized also in the new EU regulation 2021/2088. Here, we evaluate the biochar C sequestration efficiency from published data that comply with the biochar quality criteria in the above guidelines, which may regulate future large-scale field application in practice. The sequestration efficiency is calculated from the fraction of biochar C remaining in soil after 100 years (Fperm) and the C-yield of various feedstocks pyrolyzed at different temperatures. Both parameters are expressed as a function of H/Corg. Combining these two metrics is relevant for assessing the mitigation potential of the biochar economy. We find that the C sequestration efficiency for stable biochar is in the range of 25%–50% of feedstock C. It depends on the type of feedstock and is in general a non-linear function of H/Corg. We suggest that for plant-based feedstock, biochar production that achieves H/Corg of 0.38–0.44, corresponding to pyrolysis temperatures of 500–550°C, is the most efficient in terms of soil carbon sequestration. Such biochars reveal an average sequestration efficiency of 41.4% (±4.5%) over 100 years.

Til dokument

Sammendrag

Commercial fruit production in Norway is located at around latitude 60° north, demanding a careful choice of adapted cultivars. The most comprehensive collection of apple genetic resources in Norway is being kept in the Norwegian Apple Collection (NAC) at the Njøs Fruit and Berry Centre (NJØS). The collection contains around 350 accessions and was recently genotyped with a single nucleotide polymorphism (SNP) array. Curated SNP data were used for the assessment of structure and diversity, pedigree confirmation, and core collection development. In the following SNP analysis, we identified several duplicates and parent-child relationships. Across the geographic regions represented, the collection was equally diverse. Different methods for analyzing population structure were applied. K-means clustering and a Bayesian modeling approach with prior assumptions of the data revealed five subpopulations associated with geographic breeding centers. The collection has a distinct genetic structure and low relatedness among the accessions; hence, two core collections with 100 accessions in each were created. These new core collections will allow breeders and researchers to use the NAC efficiently. The results from this study suggest that several of the accessions in the Norwegian Apple Collection could be of high importance for breeding purposes.

Til dokument

Sammendrag

In forest ecosystems, fungi are the key actors in wood decay. They have the capability to degrade lignified substrates and the woody biomass of coniferous forests, with brown rot fungi being common colonizers. Brown rots are typically involved in the earliest phase of lignocellulose breakdown, which therefore influences colonization by other microorganisms. However, few studies have focused on the impact of introducing decayed wood into forest environments to gauge successional colonization by natural bacterial and fungal communities following partial decay. This study aimed to address this issue by investigating the bacterial and fungal colonization of Norway spruce (Picea abies) wood, after intermediate and advanced laboratory-based, pre-decay, by the brown rot fungus Gloeophyllum trabeum. Using Illumina metabarcoding, the in situ colonization of the wood blocks was monitored 70 days after the blocks were placed on the forest floor and covered with litter. We observed significant changes in the bacterial and fungal communities associated with the pre-decayed stage. Further, the wood substrate condition acted as a gatekeeper by reducing richness for both microbial communities and diversity of fungal communities. Our data also suggest that the growth of some fungal and bacterial species was driven by similar environmental conditions.

Sammendrag

Norsk institutt for bioøkonomi har i perioden 2017-2021 utført vegetasjonskartlegging på Malangshalvøya i Balsfjord kommune, Troms og Finnmark fylke. Kartlagt areal er 348 km². Kartlegginga er gjort etter instruks for kartlegging i målestokk 1:20 000 - 50 000 (VK25). Det er laget vegetasjonskart og avleda temakart for sauebeite. Denne rapporten beskriver metode for kartlegging, registrerte vegetasjonstyper og vegetasjonsfordeling i området. Det er gitt en omtale av beiteverdi og beitekapasitet, samt råd omkring skjøtsel av kulturlandskap og utnyttelse av beitet.

Til dokument

Sammendrag

This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.

Til dokument

Sammendrag

Aims: In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. Methods and results: The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. Conclusions: These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.