Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Increasing the protein value in grass silages for dairy cows is of interest to increase use of homegrown protein sources and reduce nitrogen (N) losses to the environment. Studies have shown that wilting of grass silage can improve the metabolizable protein (MP) value by increasing the rumen microbial protein yield (MCP) and rumen escaped feed protein. We hypothesised that feeding wilted grass silage can improve milk and milk protein production in dairy cows and reduce the need for MP, estimated as amino acids absorbed in the small intestine (AAT), in concentrate. To test this, a continuous feeding experiment with 48 early to mid-lactation Norwegian Red dairy cows, kept in a loose housing system was conducted. Treatments were first cut grass silages from round bales, harvested at early booting from a sward of timothy (Phleum pratense), perennial rye grass (Lolium perenne) and meadow fescue (Festuca pratensis), wilted to 260 and 417 g dry matter (DM)/kg fresh matter. The grass silage was fed ad libitum and supplied with 8.3 kg/d of concentrate, either low (108 g AAT/kg DM) or high (125 g AAT/kg DM) in MP concentration, in a 2×2 factorial arrangement. The experiment lasted for 11 weeks, with the 2 first weeks, where cows received same feeding, used as covariate, and the last 4 weeks were used as data collection period. Wilting reduced fermentation products, ammonia and soluble N in the grass silage, while increased residual water-soluble carbohydrates, like expected. However, there was no difference between treatments in daily silage DM intake (13.1 kg) and milk yield (30.2 kg) or milk content, but feeding high MP concentrate increased urea and uric acid in urine. No major differences were found for rumen pH, amino acids in blood plasma or purine derivatives over creatinine index, as indirect estimate for MCP. In conclusion, high silage DM and high MP in concentrate did not increase the milk production in this study.