Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.

Til dokument

Sammendrag

One challenge in precision nitrogen (N) management is the uncertainty in future weather conditions at the time of decision-making. Crop growth models require a full season of weather data to run yield simulation, and the unknown weather data may be forecasted or substituted by historical data. The objectives of this study were to (1) develop a model-based in-season N recommendation strategy for maize (Zea mays L.) using weather data fusion; and (2) evaluate this strategy in comparison with farmers’ N rate and regional optimal N rate in Northeast China. The CERES-Maize model was calibrated using data collected from field experiments conducted in 2015 and 2016, and validated using data from 2017. At two N decision dates - planting stage and V8 stage, the calibrated CERES-Maize model was used to predict grain yield and plant N uptake by fusing current and historical weather data. Using this approach, the model simulated grain yield and plant N uptake well (R2 = 0.85–0.89). Then, in-season economic optimal N rate (EONR) was determined according to responses of simulated marginal return (based on predicted grain yield) to N rate at planting and V8 stages. About 83% of predicted EONR fell within 20% of measured values. Applying the model-based in-season EONR had the potential to increase marginal return by 120–183 $ ha−1 and 0–83 $ ha−1 and N use efficiency by 8–71% and 1–38% without affecting grain yield over farmers’ N rate and regional optimal N rate, respectively. It is concluded that the CERES-Maize model is a valuable tool for simulating yield responses to N under different planting densities, soil types and weather conditions. The model-based in-season N recommendation strategy with weather data fusion can improve maize N use efficiency compared with current farmer practice and regional optimal management practice.

Sammendrag

Norwegian pear (Pyrus communis L.) production has been in decline for the last 25 years. This was mainly because of old cultivars, with low yields and poor consumer appeal, could not compete against strong competition from imported pears, mainly ‘Conference’. Since 1994, the Norwegian breeding company, Graminor Ltd., has released several new pear cultivars, which have been evaluated at NIBIO Ullensvang, western Norway. The first trial was planted in 1999 and included the Graminor Ltd. cultivars: ‘Ingeborg’, ‘Fritjof’ and ‘Anna’, which were bred by the Norwegian University of Life Sciences. In 2002, a second trial was planted including Graminor Ltd. cultivars: ‘Kristina’, ‘Ingrid’ and ‘Celina’ and these were compared against a control, ‘Clara Frijs’. All scion cultivars were grafted on the semi-vigorous rootstock ‘Brokmal’ and grown for 8 years. In both trials, full bloom (~80% of flowers open) took place between 7 May + 3 days and 15 May + 4 days. Flowering was however, completed within a 7-day period in any one year, ensuring adequate overlap in flowering time between all cultivars. Over the final 4-year period all cultivars were evaluated, ‘Anna’, ‘Fritjof’, ‘Kristina’ and ‘Ingeborg’ all had moderate cumulative yields (64.7, 66.2, 36.1, and 30.4 kg·tree-1, respectively). Fruit weight (212 to 183g) and quality of all these cultivars was acceptable (11.2% ≤ TSS ≤ 11.8%; 0.16% ≤ acidity ≤ 0.22%). However, ‘Fritjof’ had many misshapen fruit and exhibited pre-harvest shriveling in several instances making it unacceptable for commercial plantings. ‘Clara Frijs’ and ‘Celina’ cumulative yields were low (12.5 and 21.2 kg per tree, respectively) and fruit were also small (172 to 161 g, respectively). However, due to the attractive cerise-blush ‘Celina’ (trademarked QTee®) pear is now widely planted in Norway and abroad and grafted on Quince rootstocks.

Til dokument

Sammendrag

The banana weevil (BW), Cosmopolites sordidus, is the main coleopteran pest of banana, causing up to 100% yield loss. In this study, we screened 20 isolates of entomopathogenic fungi (EPF) for the management of BW. In the lab, eight Beauveria bassiana isolates caused >50% mortality of the adult BW, whereas Metarhizium anisopliae and Isaria fumosorosea isolates were less pathogenic. B. bassiana isolates ICIPE 648, ICIPE 660 and ICIPE 273 were the most pathogenic, killing ≥80% of adult BW. B. bassiana isolate ICIPE 622 yielded the highest spores per BW cadaver (1.84 × 108 spores), followed by ICIPE 660, ICIPE 273 and ICIPE 648—1.17 × 108, 3.8 × 107 and 3.6 × 107 spores, respectively. ICIPE 273 had the shortest LT50 (5.3 days) followed by ICIPE 648 (9.8 days) and 660 (11.1 days). Similarly, the LC50 values for the three isolates were 5.18 × 107, 5.49 × 107 and 5.2 × 107 spores mL−1, respectively. In the field, ICIPE 273 and ICIPE 648 had the highest (31.3%) and lowest (20.8%) pathogenicity, respectively. This study indicates that the B. bassiana isolates ICIPE 273, ICIPE 648 and ICIPE 660 are potential candidates for the environmentally sustainable management of BW.

Sammendrag

Plantevernmidler er et viktig verktøy i dagens plantevernpraksis i jordbruket for å sikre gode avlinger. Miljørisikoen knyttet til det enkelte plantevernmiddel vurderes nøye før det godkjennes for bruk, men langvarig overvåking er nødvendig for å avdekke de faktiske miljøkonsentrasjoner og - effekter etter forskriftsmessig bruk av plantevernmidler. Sveriges nasjonale miljøovervåkingsprogram for plantevernmidler startet i 2002. Hovedmålet med programmet er å følge langtidstrender i påvirkningen av jordbrukets plantevernmiddelbruk på kvaliteten av overflate- og grunnvann, samt å bestemme miljøkonsentrasjonene av plantevernmidler i sediment, luft og nedbør. Formålet med denne evalueringen var å vurdere styrker og svakheter ved overvåkingsprogrammet, samt behov for endringer i den praktiske gjennomføringen, rapporteringsprosedyrer og målsetningen med programmet. Denne evalueringen vurderer også behovene hos de aktuelle sluttbrukergruppene for programmet som inkluderer svensk landbruks- og miljøforvaltning, rådgivningstjenesten i landbruket, bønder og bondeorganisasjoner mv.

Sammendrag

NIBIO har evaluert reintallsreduksjonsprosessen (2011-2021) i Finnmark, med fastsetting av øvre reintall i bruksreglene og forholdsmessig (prosentvis lik) reduksjon for siidaer som ikke klarte å gjennomføre reduksjonsplanen. Formålet med reintallstilpasningen om å oppnå et bærekraftig reintall som også sikrer beitegrunnlaget for framtidige generasjoner i reindriftsnæringen, er i hovedsak oppnådd. Prosessen har samtidig medført konflikter med osisjonering, «kvoteordning», uenigheter innad i reindriftsnæringen om beitegrenser og reintall, redusert tillit til forvaltningen og svekket selvstyre.

Til dokument

Sammendrag

Pollination sustains biodiversity and food security, but pollinators are threatened by habitat degradation, fragmentation, and loss. We assessed how remaining forest influenced bee visits to flowers in an oil palm-dominated landscape in Borneo. We observed bee visits to six plant species: four crops (Capsicum frutescens L. “chili”; Citrullus lanatus (Thunb.) Matsum & Nakai “watermelon”; Solanum lycopersicum L. “tomato”; and Solanum melongena L. “eggplant”); one native plant Melastoma malabathricum L. “melastome”; and the exotic Turnera subulata Smith “turnera”. We made one local grid-based and one landscape-scale transect-based study spanning 208 and 2130 m from forest, respectively. We recorded 1249 bee visits to 4831 flowers in 1046 ten-min observation periods. Visit frequency varied among plant species, ranging from 0 observed visits to S. lycopersicum to a mean of 0.62 visits per flower per 10 min to C. lanatus. Bee visitation frequency declined with distance from forest in both studies, with expected visitation frequency decreasing by 55% and 66% at the maximum distance from forest in each study. We also tested whether the distance to the nearest oil palm patch, with a maximum distance of 144 m, influenced visitation, but found no such associations. Expected visitation frequency was 70%–77% lower for plants close to a 200 ha forest fragment compared with those near large continuous forests (>400 ha). Our results suggest that, although found throughout the oil palm-dominated landscape, bees depend on remaining forests. Larger forests support more bees, though even a 50 ha fragment has a positive contribution. Abstract in Indonesian is available with online material.