Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

In the last decade, several studies aimed at dissecting the genetic architecture of local small ruminant breeds to discover which variations are involved in the process of adaptation to environmental conditions, a topic that has acquired priority due to climate change. Considering that traditional breeds are a reservoir of such important genetic variation, improving the current knowledge about their genetic diversity and origin is the first step forward in designing sound conservation guidelines. The genetic composition of North-Western European archetypical goat breeds is still poorly exploited. In this study we aimed to fill this gap investigating goat breeds across Ireland and Scandinavia, including also some other potential continental sources of introgression. The PCA and Admixture analyses suggest a well-defined cluster that includes Norwegian and Swedish breeds, while the crossbred Danish landrace is far apart, and there appears to be a close relationship between the Irish and Saanen goats. In addition, both graph representation of historical relationships among populations and f4-ratio statistics suggest a certain degree of gene flow between the Norse and Atlantic landraces. Furthermore, we identify signs of ancient admixture events of Scandinavian origin in the Irish and in the Icelandic goats. The time when these migrations, and consequently the introgression, of Scandinavian-like alleles occurred, can be traced back to the Viking colonisation of these two isles during the Viking Age (793-1066 CE). The demographic analysis indicates a complicated history of these traditional breeds with signatures of bottleneck, inbreeding and crossbreeding with the improved breeds. Despite these recent demographic changes and the historical genetic background shaped by centuries of human-mediated gene flow, most of them maintained their genetic identity, becoming an irreplaceable genetic resource as well as a cultural heritage.

Sammendrag

More than 2/3rds of Norway’s agricultural area are grassland, and more than half of it is over 5 years old. Renewing old grassland increases annual yield but causes yield loss during renewal. Parts of the increased yield is due to replacement of low-productive species with high production species and cultivars, replacing biodiversity with productivity. Finding the optimal rate of renewal requires long term experiments to compare the sustainability of different strategies. Therefore, three field experiments were established to investigate the effect of difference renewal and harvest strategies on grass yield and quality, on similar mineral soil at Særheim (58.5°N, 5.6°E) in 1968 and Fureneset (61.3°N,5.0°E) in 1974, and on peat soil at Svanhovd (69.5°N,30.0°E) in 1968. Until 1991, the experiment included non-renewed treatments, and renewal every 3rd or 6th year. It was cut either two or three times a year, with autumn grazing on parts of the two-cut regime. The experiment was simplified in 1992, with the establishment of another non-renewed treatment, all treatments being cut 3 times a year (2 at Svanhovd), no grazing but contrasting slurry and compound fertilizer applications. This phase lasted until 2011, followed by period with no renewal and minimal registration. The third phase started in 2016, with renewal of all treatments at Fureneset and Særheim, except the permanent grassland from 1968/1974. Duration between renewals was doubled, and fertilizer applications revised. Presenting results from the third phase, we show that five to six years are required to recoup and significantly over-yield the non-renewed grassland. We will use soil chemical and physical properties, fertilizer application and yield gaps as well as ecological succession from sown seed mixture in 2017 till 2022 grassland to discuss the why we needed six years for all renewed treatments to over-yield permanent grassland from 1974.