Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

Dieback of European ash (Fraxinus excelsior L.), a disease caused by the ascomycete Hymenoscyphus fraxineus (previously referred to as H. pseudoalbidus or Chalara fraxinea), was first observed in Poland in the early 1990ies, and is currently present almost throughout the entire distribution area of European ash. The characteristic symptoms of the disease include dead shoots with necrotic lesions in the bark and discoloration of xylem and pith but the seasonal dynamics of pathogen spread in shoot tissues remain poorly understood. To investigate whether the internal spread of the fungus involves season-specific patterns, saplings with necrotic bark lesions in 1-2 -year-old stem regions were collected during 2014-2015 at time intervals in spring, summer, autumn and winter at several localities in western Ukraine and at two localities in south-eastern Norway. Tissuespecific presence of H. fraxineus was determined by a highly sensitive quantitative real-time PCR assay that is specific to DNA of H. fraxineus. The relatively high proportion of bark samples positive for H. fraxineus in the saplings collected during spring provides support to a model that H. fraxineus can be a primary causative agent of bark lesions and that other fungi may eventually replace it in old infection areas.

Til dokument

Sammendrag

BACKGROUND Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. RESULTS Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. CONCLUSION High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry

Til dokument

Sammendrag

Black soldier fly (Hermetia illucens) larvae are a promising source of protein and lipid for animal feeds. The nutritional composition of the BSF larvae depend partly on the composition of the feeding medium. The BSF lipid profile in part mimics the feeding media lipid profile, and micronutrients, like minerals and vitamins, can readily accumulate in black soldier fly larvae. However, investigative studies on bioconversion and accumulation of nutrients from media to black soldier fly larvae are scarce. Here we show that inclusion of the brown algae Ascophyllum nodosum in the substrate for black soldier fly larvae can introduce valuable nutrients, commonly associated with the marine environment, into the larvae. The omega-3 fatty acid eicosapentaenoic acid (20:5n-3), iodine and vitamin E concentrations increased in the larvae when more seaweed was included in the diet. When the feeding media consisted of more than 50% seaweed, the larvae experienced poorer growth, lower nutrient retention and lower lipid levels, compared to a pure plant based feeding medium. Our results confirm the plasticity of the nutritional make-up of black soldier fly larvae, allowing it to accumulate both lipid- and water-soluble compounds. A broader understanding of the effect of the composition of the feeding media on the larvae composition can help to tailor black soldier fly larvae into a nutrient profile more suited for specific feed or food purposes.

Sammendrag

Changes in land-use and climate represent major threats to Atlantic heathlands, and extreme climatic events, such as droughts, are likely to increase in frequency and intensity in the future. This is of particular relevance for nature management, and conservation, as extreme events are expected to have system-wide impacts on species and ecosystems. During the winter of 2014 an intense drought combined with low temperatures resulted in a massive dieback of Calluna vulgaris in the Norwegian heathlands, and two severe heathland wildfires occurred. With this as a background, a new Norwegian research project: Land use management to ensure ecosystem service delivery under new societal and environmental pressures in heathlands (LandPress) were initiated. LandPress combines observational data on ecosystem responses and resilience after the 2014 event with targeted experiments, one of them the International Drought Experiment, integrating our project into an international context. Drought impacts in mature Calluna-stands is investigated along a 650-km latitudinal gradient in Norway. Our first results indicate more drought damage in northern heathlands than in southern. Healthy Calluna was only observed in scattered patches with more suitable micro-climate, and, interestingly, in some areas regenerating after recent prescribed management burning. Moreover, drying experiments to learn how quickly Calluna plants dry up at 20°C and 50% relative humidity from rain-wet conditions showed that old Calluna stands represents a severe fire risk within two days. Young and more vigorous plants in the building phase (6–15 years old), as well as freeze drought damaged (typically some dead small branches), old but still live plants, showed different drying characteristics and dried more slowly. LandPress interlaces five work packages, exploring the impact of land-use change in combination with extreme climatic events in terms of vegetation change, ecosystem resilience, ecosystem services provisioning, sustainability, and evidence-based management and fire risk prevention.

Til dokument

Sammendrag

OBJECT: Improved precision fertilization by introducing sensors and remote control to secure fruit yield and reduce nutrient leaching in soil culture. MATERIAL AND METHODS:We broadcasted before bedding and mulching 50 g m–2 of a multi-mineral fertilizer. Beds had two plant rows 20 cm apart, with plant distance of 25 cm. Experimental design was split plot with three replications and three treatments. Treatments: fertigation in large plots, cultivar in small plots and year. RESULTS: Plant development in the establishing year had no benefit of fertigation in addition to fertilizer given before bedding. When the yield is 3 kg m–2 a nutrient solution of 6 g N m–2 gave highest yield, using 4 g m–2 from two weeks before harvest and during harvest. ‘Florence’ and ‘Sonata’ developed well; however, ‘Florence’ had mildew on fruits in the last cropping year. ‘Korona’ presented well the first cropping year, but grew small fruits heavily infested by mildew in the last cropping year. CONCLUSION: Fertilization had effect on fruit yield. It is discussed how a fertilization schedule for the establishment year and cropping years can be adapted to plant development stages. Mildew infestation on fruits was dependent of cultivar and fertilization. Introducing sensors for recording of growth factors and in situ ion-levels of soil water nutrients, proved valuable.

Til dokument

Sammendrag

Invasion of annual bluegrass (Poa annua L.) is a major concern on red fescue (Festuca rubra L.) putting greens. Our objective was to determine the effect of three seasonal fertilizer distribution treatments on red fescue turf quality and annual bluegrass encroachment. The experiment was conducted over 2 yr on a USGA-specified putting green at NIBIO Turfgrass Research Center Landvik, Norway (58° N). A complete liquid fertilizer was applied weekly for an annual nitrogen input of 11 g m−2 in all treatments. In the FLAT rate treatment, the weekly fertilizer rate was 0.45 g N m−2 wk−1 from 5 May to 28 September. The FALL+ treatment received 0.68 g N m−2 wk−1 from 11 August to 28 September and 0.23 g N m−2 wk−1 from 5 May to 21 June, whereas the SPRING+ treatment was the opposite. The SPRING+ fertilization resulted in significantly better turf quality and significantly less annual bluegrass than the two other treatments in the second year of the study. The FALL+ fertilization gave higher quality ratings in the fall and early spring, but this effect came at the expense of more annual bluegrass. In conclusion, we recommend a fertilizer regime with the highest input from early May until midsummer to produce red fescue putting greens with the highest possible turfgrass quality and minimal encroachment by annual bluegrass.

Til dokument

Sammendrag

Plums contain high levels of hydroxycinnamates (neo-chlorogenic acid, Neo-CGA), anthocyanins (ATH) and ascorbic acid. The drying process influences their phytochemical content and plum cultivars are known to have different phytochemical retention after drying, but little data exists regarding to possible differences between conventional (CONV) and organic (ORG) plums. The aim of this study was to evaluate the phytochemical content in three different CONV and ORG plum cultivars (Jubileum, Reeves and Victoria) after freeze drying (FD), conventional oven drying (OD) and solar drying (SD). The three cultivars responded differently to the methods of drying. Notably, Jubileum decreased its ATH mostly when subjected to OD while its Neo-CGA content was mostly reduced after SD. Additionally, ORG Victoria and Reeves stood out for the low decrease of Neo-CGA after drying compared to the same cultivars cultivated with conventional system. The Folin-Ciocalteu index, which was significantly different in OD (6942 mg GAE/kg dw) and SD (5420 mg GAE/kg dw) samples, was positively related with both Neo-CGA and hydroxymethylfurfural. The present findings suggest that for some cultivars, the organic system influences the nutraceutical quality of dried product, thus representing an important factor that regulates the phytochemical content of dried plums.

Til dokument

Sammendrag

During the past two decades, significant spread of the perennial weeds Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) in coastal parts of Norway seems to have coincided with an observed rise in winter temperatures. This study investigated the frost tolerance (LT50) and effects of moderate frost exposure on rush plant regrowth over time during the period late November to late winter/spring, and photosynthetic activity in late winter/spring. Juncus effusus and J. conglomeratus of physiologically young age (seedlings) displayed similar high frost tolerance (LT50) and did not differ significantly in regenerative ability following prolonged frost exposure. Regrowth capacity generally increased during winter and when stress conditions increased, shoot formation was prioritised over total biomass production. Maximum quantum efficiency of photosystem II (Fv/Fm) and performance index of photosystem II (PI) were high in late winter/spring, with J. effusus showing higher values than J. conglomeratus. Green, photosynthetically active shoots, which facilitate accumulation of carbohydrates during autumn and even in winter, may provide Juncus spp. with substantial competitiveness in late winter and spring. The results revealed that the dominance of J. effusus over J. conglomeratus in pastures and leys is not due to major differences in winter survival parameters, but probably the higher photosynthetic efficiency observed in J. effusus. Generally higher temperatures during winter and lower frost kill may be contributing to the current increase in rush infestation.

Til dokument

Sammendrag

The ongoing climate change may have a distinct effect on Norway spruce growth, one of the most important tree species in European forest management. Therefore, the understanding and assessment of climate-growth relationship can help to reveal relevant patterns in temporal variability that may result in lower tree vitality and decline. The main objective of our study was to evaluate the long-term climate-growth variability of Norway spruce in south-eastern Norway, at the northern edge of the temperate zone. We sampled in total 270 dominant and co-dominant trees from 18 plots in south-eastern Norway. We analysed stem cores and evaluated crown condition parameters to assess the retrospective tree growth and vitality. Despite considerable differences in the crown parameters, high similarity among tree-ring width (TRW) series allowed compiling the regional tree-ring width chronology. Correlations between TRW and climate parameters showed temporal instability in their relationship during the period 1915–2012. While we did not detect any significant relationships between TRW and climate parameters in the first half of the study period (1915–1963), a significant correlation between TRW and spring precipitation was observed for the period 1964–2012. This shift appeared concurrent with temperatures reaching above-average values compared to the average of the climate normal period 1961–1990.

Sammendrag

Ice encasement (IE) is the most economically important winter stress in Scandinavia; however, little is known about the IE tolerance of different turfgrass species and subspecies except that creeping bentgrass (Agrostis stolonifera L.) is more tolerant than annual bluegrass (Poa annua L.). The objective of this study was to assess the impact of IE and two protective covers (plastic and plastic over a 10-mm woven mat) on the winter survival of six cool-season turfgrasses commonly used on golf greens. The experiment was conducted on a sand-based green at Apelsvoll, Norway (60°42′ N, 10°51′ E) during the winters of 2011–2012 and 2012–2013. Turfgrass samples (8 cm in diameter, 10 cm deep) were removed from the plots at the time of cover installation and throughout the winter. The samples were potted and percent live turfgrass cover assessed after 21 d of regrowth in a growth chamber. Percent turfgrass cover, percent disease, and turfgrass quality were also registered in the field plots in spring. Results indicated that velvet bentgrass (Agrostis canina L.) had superior tolerance to IE, surviving for 98 and 119 d of IE during the winters of 2011–2012 and 2012–2013, respectively. The order of IE tolerance in 2012–2013 was: velvet bentgrass > creeping bentgrass > Chewing’s fescue (Festuca. rubra L. ssp. commutata), slender creeping red fescue (F. rubra L. ssp. litoralis) ≥ colonial bentgrass (A. capillaris) > annual bluegrass. Colonial bentgrass responded negatively to both protective covers in 2012 due to the development of Microdocium nivale. None of the species benefited from the plastic cover alone, compared with natural snow conditions. Annual bluegrass was the only species that benefited from plastic over a woven mat.