Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

The viability and physiological state of brown macroalgae Fucus vesiculosus and its associated epiphytic bacteria exposed to diesel water-accommodated fraction (WAF), as well as the capacity of this association to deplete petroleum hydrocarbons (HCs) were experimentally tested. After a 6-day exposure treatment, the algal-surface associated bacteria were identified as primarily hydrocarbon-oxidising bacteria (HOB), and the algal-HOB association was able to deplete petroleum hydrocarbons from the diesel WAF by 80%. The HOB density on the algal surface exposed to diesel WAF was 350% higher compared to the control (i.e. HOB density on the algal surface exposed to ambient seawater), which suggest that they actively proliferated in the presence of hydrocarbons and most likely consumed hydrocarbons as their primary organic substrate. Exposure to diesel WAF did not affect the metabolic activity of F. vesiculosus. Higher lipid peroxidation was observed in F. vesiculosus exposed to diesel WAF while catalase concentration decreased only during the first day of exposure. Results suggest F. vesiculosus is tolerant to oil pollution and the algal-HOB association can efficiently deplete petroleum hydrocarbons in oil-contaminated seas.

Sammendrag

Green-sprouting potato seed tubers in light and elevated temperatures are vital for production in short-season climates. Using light-emitting diodes (LEDs) to inhibit sprout elongation during pre-sprouting may represent an energy-efficient alternative to traditional indoor light sources. Sprout growth inhibition and some photomorphogenic responses were therefore examined in potato cultivars exposed to LEDs of different wavelength maxima and irradiance rates. Red LED (660 nm) produced the strongest inhibition of sprout elongation at very low irradiances 10–100 nmol m−2 s−1, while far-red LED (735 nm) produced the strongest inhibition at higher irradiances. This inhibitory pattern was similar in all cultivars, although the degree of inhibition varied. The colour of sprouts and tuber skin remained etiolated under far-red LED, in contrast to LEDs between 380 and 660 nm which developed green colour intensity in an irradiance-dependent manner. Mixtures of red and far-red light, and pulses including red/far-red reversals did not produce stronger inhibition, except in some instances where total fluence was increased. Furthermore, green-sprouting under different LED colours did not seem to affect subsequent emergence and growth after planting. The current results suggest an involvement of multiple phytochromes in de-etiolation and sprout growth inhibition in seed potato tubers, which may be selectively utilised in LED-based green-sprouting in red and far-red wavelengths.

Sammendrag

Plant biology in Norway. Some main aspects; 1. Major efforts on micro and macro algae are now ongoing in Norway (lots of funding goes this way) 2. The pure basic plant biology research with molecular aspects are mostly at the major universities (exemplified here by Prof. Grini and Haman and in smaller groups at other institutions (exemplified by the TOPPFORSK project in epigenetics at NIBIO). 3. A lot of the plant biology in Norway is related to evolution, biodiversity and ecology in general, including climate change (Exemplified by studies in clinal variation and phenology) 4. There is a lot of applied research related to feed and food crops as well as forestry (including invasive species. abiotic stress, plant pathogen interactions insects and fungi with importance for agriculture). 5. There is a National Network for Plant Biology Research in Norway (led by Paul Grini from UiO). This network holds annual/biannual Norwegian Plant Biology conference (NorPlantBio) conferences. 6. Examples from the various institutions in Norway will now be presented.

Til dokument

Sammendrag

We present a game-theoretical model arguing that greater public transparency does not necessarily lead to higher social welfare. Political agents can benefit from providing citizens with misleading information aimed at aligning citizens’ choices with the political agents’ preferences. Citizens can lose from being fooled by political agents, though they can mitigate their losses by conducting costly inspections to detect false information. Producing and detecting false information is costly and can reduce social welfare.

Til dokument

Sammendrag

Aim Root growth strategies may be critical for seeding survival and establishment under dry conditions, but these strategies and their plasticity are little known. We aim to document the ability of young grass seedlings to adjust their root system architecture, root morphology and biomass allocation to roots to promote water uptake and survival under progressive drought. Methods Seedlings growing in columns filled with sand and exposed to drought or well-watered controls were repeatedly harvested for determination of biomass fractions, root length, −architecture and -morphology in a greenhouse experiment. Allometric scaling exponents and standardised major axis regression were used to investigate allocation patterns. Results Young seedlings were able to sustain leaf turgor and functions during eight weeks of progressive drought through phenotypic plasticity of the primary root system producing deeper and simpler roots. Biomass allocation to roots decreased or did not respond, and other components of root morphology showed only moderate plasticity. Conclusion Our results suggest that morphological and architectural plasticity of the primary root system may well be key features for dehydration avoidance and survival in grass seedlings under moderate drought when allocation of biomass to roots and development of secondary roots are constrained.