Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2025
Forfattere
H. Heinemann F. Durand-Maniclas F. Seidel F. Ciulla Teresa Gómez de la Bárcena M. Camenzind S. Corrado Z. Csűrös Zs. Czakó D. Eylenbosch Andrea Ficke C. Flamm J.M. Herrera V. Horáková A. Hund F. Lüddeke F. Platz B. Poós Daniel Rasse Silva-Lopes da Silva-Lopes M. Toleikiene A. Veršulienė M. Visse-Mansiaux K. Yu J. Hirte A. DonSammendrag
Det er ikke registrert sammendrag
Sammendrag
Green roofs provide vital functions within the urban ecosystem, from supporting biodiversity, to sustainable climate-positive ESS provisioning. However, how plant communities should best be designed to reach these objectives, and how specific green roof systems vary in their capacity to support these functions is not well understood. Here we compiled data on plant traits and plant–insect interaction networks of a regional calcareous grassland species pool to explore how designed plant communities could be optimised to contribute to ecological functionality for predefined green roof solutions. Five distinct systems with practical functionality and physical constraints were designed, plant communities modelled using object-based optimization algorithms and evaluated using five ecological functionality metrics (incl. phylogenetic and structural diversity). Our system plant communities supported a range of plant–insect interactions on green roofs, but not all species were equally beneficial, resulting in wide-ranging essentiality and redundancy in ecological processes. Floral traits were not predictive of pollinator preferences, but phylogeny was observed to govern the preferences. Large differences in ecological functionality can be expected between green roofs depending on system design and the extent of the plant community composition. Multifunctionality covariance diverged between systems, suggesting that ecological functionality is not inherently universal but dependent on structural limitations and species pool interactions. We conclude that informed system design has a potential to simultaneously support ecosystem services and urban biodiversity conservation by optimising green roof plant communities to provide landscape resources for pollinating insects and herbivores.
Forfattere
Astrid Brekke Skrindo Heidi Solstad Ruben Erik Roos Ida Marielle Mienna Joachim Paul Töpper Odd Egil Stabbetorp Mathias Andreasen Harald Bratli Åshild Hasvik Ragnhild Heimstad Ulrika Jansson Marte Olsen Siri Lie Olsen Daniel Ingvar Jeuderan Skoog Linn Vassvik Marianne EvjuSammendrag
- overvåking - åpen grunnlendt kalkmark - utvalgt naturtype - Oslofjorden - rødlistearter - fremmede arter - Natur i Norge
Forfattere
Randi Bolli Ingunn H. Gudmundsdottir Monsås Maren Kolltveit Bakkebø Roman Florinski Kari StuvesethSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Berit Marie Blomstrand SM Thamsborg Håvard Steinshamn Heidi Larsen Enemark Inga Marie Aasen Karl-Christian Mahnert Kristin Sørheim Francesca Shepherd Jos Houdijk Spiridoula AthanasiadouSammendrag
Plant secondary metabolites (PSMs) may improve gastrointestinal health by exerting immunomodulatory, anti-inflammatory and/or antiparasitic effects. Bark extracts from coniferous tree species have previously been shown to reduce the burden of a range of parasite species in the gastrointestinal tract, with condensed tannins as the potential active compounds. In the present study, the impact of an acetone extract of pine bark (Pinus sylvestris) on the resistance, performance and tolerance of genetically diverse mice (Mus musculus) was assessed. Mice able to clear an infection quickly (fast responders, BALB/c) or slowly (slow responders, C57BL/6) were infected orally with 200 infective third-stage larvae (L3) of the parasitic nematode Heligmosomoides bakeri or remained uninfected (dosed with water only). Each infection group of mice was gavaged for 3 consecutive days from day 19 post-infection with either bark extract or dimethyl sulphoxide (5%) as vehicle control. Oral administration of pine bark extract did not have an impact on any of the measured parasitological parameter. It did, however, have a positive impact on the performance of infected, slow-responder mice, through an increase in body weight (BW) and carcase weight and reduced feed intake by BW ratio. Importantly, bark extract administration had a negative impact on the fast responders, by reducing their ability to mediate the impact of parasitism through reducing their performance and tolerance. The results indicate that the impact of PSMs on parasitized hosts is affected by host's genetic susceptibility, with susceptible hosts benefiting more from bark extract administration compared to resistant ones.
Forfattere
Berit Marie Blomstrand Stig Milan Thamsborg Håvard Steinshamn Heidi L Enemark Inga Marie Aasen Karl-Christian Mahnert Kristin Sørheim Francesca Sheperd Jos Houdijk Spiridoula AthanasiadouSammendrag
Plant secondary metabolites (PSMs) may improve gastrointestinal health by exerting immunomodulatory, anti-inflammatory and/or antiparasitic effects. Bark extracts from coniferous tree species have previously been shown to reduce the burden of a range of parasite species in the gastrointestinal tract, with condensed tannins as the potential active compounds. In the present study, the impact of an acetone extract of pine bark (Pinus sylvestris) on the resistance, performance and tolerance of genetically diverse mice (Mus musculus) was assessed. Mice able to clear an infection quickly (fast responders, BALB/c) or slowly (slow responders, C57BL/6) were infected orally with 200 infective third-stage larvae (L3) of the parasitic nematode Heligmosomoides bakeri or remained uninfected (dosed with water only). Each infection group of mice was gavaged for 3 consecutive days from day 19 post-infection with either bark extract or dimethyl sulphoxide (5%) as vehicle control. Oral administration of pine bark extract did not have an impact on any of the measured parasitological parameter. It did, however, have a positive impact on the performance of infected, slow-responder mice, through an increase in body weight (BW) and carcase weight and reduced feed intake by BW ratio. Importantly, bark extract administration had a negative impact on the fast responders, by reducing their ability to mediate the impact of parasitism through reducing their performance and tolerance. The results indicate that the impact of PSMs on parasitized hosts is affected by host's genetic susceptibility, with susceptible hosts benefiting more from bark extract administration compared to resistant ones.