Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

The chilling requirements of ‘Junifer’, ‘Rovada’ and ‘Red Dutch’ red currants and ‘Mucurines’ and ‘Pax’ gooseberries were studied under controlled environment conditions. Field grown single-stem potted plants were chilled at 0°C from October 15 for 0 to 20 weeks and forced in a lighted greenhouse at 20°C and 18 h photoperiod for 60 days for recording of budbreak and flowering. None of the red currant plants were able to break without chilling, while the number of breaking buds increased linearly with more than four weeks of chilling, and fastest so in ‘Junifer’. ‘Red Dutch’ proved to have a particularly deep and stable dormancy. Comparable but markedly lower chilling requirements were found in the two gooseberry cultivars. While more than 20 weeks of chilling were required for full dormancy release in the red currant cultivars, 16 to 20 weeks were adequate for the ‘Mucurines’ and ‘Pax’ gooseberries, respectively. This compares with a chilling need of 14 weeks at 0°C previously found for most commercial black currant cultivars under the same conditions. The results also confirm that, as previously demonstrated for black currants, flower development requires more chilling than bud break itself also in red currants and gooseberries. This highlights the need for extended chilling of the plants before the plants are set to forcing in modern tunnel production. We also conclude that the red currant cultivar ‘Rovada’ with its large berry trusses seems particularly well suited for tunnel production.

Til dokument

Sammendrag

Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%–74% and 39%–58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.

Til dokument

Sammendrag

Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.

Til dokument

Sammendrag

There is an increasing need for ecosystem-level distribution models (EDMs) and a better understanding of which factors affect their quality. We investigated how the performance and transferability of EDMs are influenced by 1) the choice of predictors and 2) model complexity. We modelled the distribution of 15 pre-classified ecosystem types in Norway using 252 predictors gridded to 100 × 100 m resolution. The ecosystem types are major types in the ‘Nature in Norway' system mainly defined by rule-based criteria such as whether soil or specific functional groups (e.g. trees) are present. The predictors were categorised into four groups, of which three represented proxies for natural, anthropogenic, or terrain processes (‘ecological predictors') and one represented spectral and structural characteristics of the surface observable from above (‘surface predictors'). Models were generated for five levels of model complexity. Model performance and transferability were evaluated with data collected independently of the training data. We found that 1) models trained with surface predictors only performed considerably better and were more transferable than models trained with ecological predictors, and 2) model performance increased with model complexity, levelling off from approximately 10 parameters and reaching a peak at approximately 20 parameters, while model transferability decreased with model complexity. Our findings suggest that surface predictors enhance EDM performance and transferability, most likely because they represent discernible surface characteristics of the ecosystem types. A poor match between the rule-based criteria that define the ecosystem types and the ecological predictors, which represent ecological processes, is a plausible explanation for why surface predictors better predict the distribution of ecosystem types. Our results indicate that, in most cases, the same models are not well suited for contrasting purposes, such as predicting where ecosystems are and explaining why they are there.

Til dokument

Sammendrag

Fast regrowth from deep roots and rhizomes makes it difficult to mechanically control the perennials Cirsium arvense and Tussilago farfara respectively. It is, however, not clear whether new shoots originate mainly from fragments of roots/rhizomes in upper soil layers or from an intact system below depth of soil cultivation. Here we present results from three experiments with natural infestations of C. arvense, and two with both C. arvense and T. farfara. Plots of 1 m2 were excavated to different depths (13–25 cm), all below-ground plant parts in the topsoil were collected and thereafter fragments were either returned to or removed from the plots. Regrowth from disturbed plots with removed or returned fragments was compared. The origin of regrown shoots, that is, whether they originated from seeds, intact below-ground root/rhizome systems or returned fragments, was examined. More C. arvense shoots originated from the intact root system (48%–84%) than from root fragments (16%–52%). The final aboveground biomass was not affected by removal of the top-soil fragments. For T. farfara, a small proportion (3%) of new shoots originated from the intact rhizome system, and the rest from fragments. We conclude that the intact root system of C. arvense contributes at least as much as root fragments to regrowth after soil cultivation, which might imply that time of treatment and depth of cultivation are crucial for the effect of mechanical control. For T. farfara, the results suggest that tillage equipment with high capacity to fragment the rhizome system will contribute to efficient control.

Til dokument

Sammendrag

Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed the literature (published 2000–2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation), and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use, and population dynamics. We targeted deer species that inhabit relevant biomes in North America, Europe, and Asia: moose, roe deer, wapiti, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou, and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (e.g., population density and predation) on how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type, and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall, and snow.

Sammendrag

Authors: Franić, I, S Prospero, KA, EA, FA, MAA-R, SA, DA, WB, MB, KB, AB, PB, HB, TB, MB Brurberg, TB, DB, MC, JC, DC, GC, K, KD, MdeG, JD, HTDL, RD, JE, ME, CBE, RF, JF, NF, ÁF-M, MG, BG, MH, LH, MKH, MH, MJJ, MK, MK, NK, MK, VK, NL, MVL, JL, ML, HL, CLM, CM, DM, IM, TM, JM, DM, CN, RO'H, FO, TP, TP, BP, HR, JR, AR, AR, BR, KS, CS, V Talgø, МТ, AU, MU, AMV, CV, YW, JW, MZ, R Eschen. Abstract: Non-native pests, climate change, and their interactions are expected to disrupt the relationships between trees and the organisms associated with them, thereby impacting forest health. In order to comprehend and anticipate these changes, it is crucial to identify the factors that shape tree-associated communities. We collected and analysed insects and fungi obtained from dormant twigs of 155 tree species across 51 botanical gardens or arboreta in 32 countries on six continents. Fungi were characterized by high-throughput sequencing. Insects were first reared and then sorted into taxonomic orders and feeding guilds. Herbivorous insects were then grouped into morphospecies and were identified using molecular and morphological approaches. By employing generalized dissimilarity models, we assessed the relative significance of various climatic, host-related, and geographic factors in driving dissimilarities among tree-associated communities. This dataset reveals the diversity of tree- associated taxa, as it contains 12,721 amplicon sequence variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. Mean annual temperature, the phylogenetic distance between hosts, and the geographic distance between locations were the primary determinants of dissimilarities. The increasing influence of high temperatures on community differences suggests that climate change could directly and indirectly impact tree-associated organisms through shifts in host ranges. Furthermore, insect and fungal communities exhibited greater similarity among closely related hosts compared to distantly related hosts, implying that expansion of host ranges could facilitate the emergence of new pests. Additionally, dissimilarities among tree-associated communities increased with geographic distance, suggesting that human-mediated transportation could lead to the introduction of new pests. These study results underscore the importance of limiting the introduction and establishment of tree pests and enhancing the resilience of forest ecosystems in response to climate change.