Daniel Rasse

Head of Department/Head of Research

(+47) 922 63 608
daniel.rasse@nibio.no

Place
Ås H7

Visiting address
Høgskoleveien 7, 1433 Ås

Abstract

Biochar is a recalcitrant carbon-rich solid produced by pyrolysis of organic residues, and its application to soil is considered a promising approach to mitigate climate change, as biochar resists decomposition to readily contributes to soil carbon (C) sequestration. The IPCC provides a basis for future national-scale accounting of the changes in soil C stocks following biochar application to cropland soils. The IPCC Tier 1 approach for biochar is based on fixed emission factors to estimate biochar C sequestration. In contrast, the Tier 2 approach allows countries to use local emission factors and climate data to calculate the contribution of biochar to soil C sequestration. Accurate accounting of biochar C sequestration is essential for ensuring the credibility of C offsetting projects, as well as providing incentives for implementing biochar in C credit schemes, calling for comparative analyses of the different biochar Tier approaches. Here we retrieved biochar samples from local producers and measured their H/Corg to estimate the persistence of biochar in Norwegian croplands post application. Various feedstocks were considered, including forest residues, woody wastes, manure, sludge, and straw. For all biochar samples, the 100-year stable C fraction was calculated at ≥ 0.945, thus exceeding the default Tier 1 value (0.8). Biochar sourced from woody- and forestry residues had a Corg content above the default Tier 1 value (0.77). Based on this and data about national feedstock supplies, we compared the theoretical potential of biochar soil C sequestration to mitigate climate change in Norway, using the IPCC Tier 1 and Tier 2 approaches. Biochar C sequestration in soil was calculated at 0.79 Tg CO2-eq yr−1 and 0.92 to 0.96 Tg CO2-eq yr−1, respectively for the Tier 1 and Tier 2 approaches, thus, underlining that the choice of IPCC Tier approach can have a large impact on the estimated mitigation potential of biochar.

Sheeps on cropland

Division of Forest and Forest Resources

Tier 3 modelling of carbon stock change in cropland mineral soil


The primary objective of the Tier 3 project is to enable the implementation of at Tier 3 methodology for carbon stock change in cropland mineral soil in the national GHG accounting under the UNFCCC. This includes both developing a Tier 3 methodology based on a modeling approach and verification of such an approach for use on the national level.

Active Updated: 01.03.2024
End: dec 2024
Start: mar 2017
Schematic illustration-SinoGrain III 050523

Division of Environment and Natural Resources

Sinograin III: Smart agricultural technology and waste-made biochar for food security, reduction of greenhouse gas (GHG) emission, and bio-and circular economy


The Sinograin III project’s overall objective is to contribute to the UN SDGs by widely implementing precision agriculture technologies and application of “waste-to-value” biochar products to achieve sustainable food production with minimized GHG emission, improve soil fertility and promote green growth/zero waste in modern agriculture in China.

Active Updated: 24.09.2024
End: oct 2027
Start: sep 2023