Erik J. Joner

Head of Department/Head of Research

(+47) 450 00 567
erik.joner@nibio.no

Place
Ås O43

Visiting address
Oluf Thesens vei 43, 1433 Ås

Biography

Erik Joner has a PhD in soil microbiology (Norwegian University of Life Sciences, 1994) and a senior scientist habilitation (HDR; Habilitation a Diriger des Recherches, Universite Henri Poincare, 2001). He has worked on degradation of environmental pollutants, plant uptake of heavy metals, ecotoxicology and soil biology within a number of national and international projects.
 
His expertize covers soil biology and soil health, fate of microplastics in soil, effects of biochar on soil and soil organisms, uptake of heavy metals and organic pollutants in plants and earthworms, degradation of organic pollutants in soil and compost, use of biochar in produced soil and "soil" for green roofs, mycorrhiza as mechanism for nutrient uptake in plants, antimicrobial resistance in soil, etc.

Read more

Abstract

We investigated dissipation, earthworm and plant accumulation of organic contaminants in soil amended with three types of sewage sludge in the presence and absence of plants. After 3 months, soil, plants and earthworms were analyzed for their content of organic contaminants. The results showed that the presence of plant roots did not affect dissipation rates, except for galaxolide. Transfer of galaxolide and triclosan to earthworms was significant, with transfer factors of 10–60 for galaxolide and 140–620 for triclosan in the presence of plants. In the absence of plants, transfer factors were 2–9 times higher. The reduced transfer to worms in the presence of plants was most likely due to roots serving as an alternative food source. Nonylphenol monoethoxylate rapidly dissipated in soil, but initial exposure resulted in uptake in worms, which was detected even 3 months after sewage sludge application. These values were higher than the soil concentration at the start of the exposure period. This indicates that a chemical's short half-life in soil is no guarantee that it poses a minimal environmental risk, as even short-term exposure may cause bioaccumulation and risks for chronic or even transgenerational effects.

Abstract

Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. A variety of biodegradable plastic products have thus been marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not necessarily fulfilled, and the possibility that biodegradable plastics may also contribute to plastic pollution must be evaluated. A two-year field experiment with biodegradable mulches (BDMs) based on polybutylene adipate terephthalate (PBAT/starch and PBAT/polylactic acid) buried in several agricultural soils in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation after two months and depolymerization by hydrolysis, as shown by Fourier-transform infrared spectroscopy. The phytopathogenic fungus Rhizoctonia solani was found to be associated with BDM degradation, and the formation of biodegradable microplastics was observed throughout the experimental period. Between 52 and 93 % of the original BDM mass was recovered after two years, suggesting that accumulation is likely to happen in cold climatic regions when BDM is repeatedly used every year. Mass loss followed negative quadratic functions, implying increasing mass loss rates over time. Despite the range of climatic and edaphic factors, with various agricultural practices and vegetable productions at the study locations, the parameters that significantly favored in situ BDM degradation were higher soil organic matter content and temperatures.