Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Old trees are important for biodiversity, and the process of their identification is a critical process in their conservation. However, determining the tree age by core extraction, ring counts, and eventually, cross-dating by means of dendrochronology is labor-intensive and expensive. Here we examine the alternative method of estimating determining tree age by visual characteristics for old Norway spruce and Scots pine trees. We used forest stands previously identified as “Old tree habitats” by visual criteria in Norwegian boreal forests. The efficiency of this method was tested using pairwise comparison of the age of core samples from trees within these sites, and within neighboring sites. Age regression models were constructed from morphological traits and site variables to investigate how accurately old trees can be detected. Cored trees in the Old-tree habitats were on average 41.9 years older than compared to a similar selection of trees from nearby mature forests. Several characteristics such as bark structure, stem taper and visible growth eccentricities can be used to identify old Norway spruce and Scots pine trees. Old trees were often found on less productive sites. Due to the wide range of environments included in the study, we suggest that these findings can be generalized to other parts of the boreal zone.

Til dokument

Sammendrag

The forestry sector is constantly looking for ways for making data-driven decisions and improving efficiency. The application of Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) allow the users to go beyond looking at simple key performance indicators. Benchmarking is one of the most common tools in business for improving efficiency and competitiveness. This study searched for benchmarking studies in Web of Science until December 2020. It reviewed 56 benchmarking studies in forestry and discusses the potential advantages of using benchmarking in forestry. More than 80% of the studies apply DEA. This review found that almost half of the benchmarking studies in forestry have attempted to estimate the efficiency of forest management organizations at regional scale, mostly being public or state-owned forest districts. A bit more than one-third of the studies have focused on benchmarking forest industries and one-fifth, benchmarking of forest operations. Forest management organizations mainly applied benchmarking for internal comparison and forest industries entirely focused on competitive benchmarking. Surprisingly, in most cases the studies do not necessarily overlap geographically with forest rich countries (e.g., Russian Federation or Brazil). A number of studies address multiple criteria. The future potential for applying automatic data transfer from harvest machines to interactive benchmarking systems are discussed. Finally, the paper discusses the advantages and weaknesses of benchmarking and future research on improving usefulness and usability of benchmarking in forest businesses.

Sammendrag

The year 2020 will go down in history as unusual and different — the year of the coronavirus. Naturally, it has also affected the work of NIBIO. But despite that, we have a great deal to show for in terms of specialist production and dissemination, across a wide range of areas that are important to many people in the Norwegian society. The year 2020 was also special for another reason — this was the year NIBIO celebrated its fifth birthday. Mergers take time and can be difficult, but also create space for development and essential change and NIBIO has come a long way in these five years. We carry out extensive specialist activity all over the country, and increasingly beyond Norway’s borders too. Our broad foundation, covering specialist production problems and value creation, resource and environmental issues with economics and social science included, means that we can fully back up our slogan “NIBIO — Making Sustainability Meaningful.” It is the core of our social responsibility. In other words, our aim is for our expertise to contribute to a positive society, where sustainable solutions depend on the abilities and specialist insight that allow us to balance a range of considerations. With enormous diversity and more than 1,000 projects in our portfolio, it is virtually impossible to present a full picture of NIBIO’s specialised activities. In this brochure, we therefore present just a small selection of articles which are a sample of our specialised activities in 2020. We hope these samples are enough to tempt you to want to find out more about NIBIO and all the exciting projects and specialised development that our 700 employees contribute towards.

Til dokument

Sammendrag

With the development of the world economy and society, the living standards of residents have been improved, along with a large amount of food waste and carbon dioxide (CO2) emissions. In the face of global warming and energy shortages, food waste can be used as high-value bio-energy raw materials which is also an effective way to reduce CO2 emissions. Therefore, this paper proposes a novel anaerobic digestion and CO2 emissions efficiency analysis based on a Slacks-Based Measure integrating Data Envelopment Analysis (SBM-DEA) model to evaluate and optimize the process structure of anaerobic treatment of food waste. The total feed volume and the discharge volume of liquid digestate are taken as inputs, and the total methane (CH4) production volume is taken as the desirable output and CO2 emissions are regarded as the undesirable output to build the biogas production and CO2 emissions evaluation model during the anaerobic digestion process. Finally, the proposed method is used in the actual anaerobic digestion process. The results show that the overall efficiency values in January, April, May, and June in 2020 are higher than those in other months. At the same time, due to the optimal allocation of slack variables of inputs and undesirable outputs, the efficiency values of other inefficient anaerobic digestion days can be improved.

Til dokument

Sammendrag

Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling microorganisms. Fungal communities are typically structured by soil depth, but how other microorganisms are structured is less known. Here, we tested whether depth-dependent variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial communities. This was investigated by DNA metabarcoding in conjunction with network analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages with soil depth was detected for all organismal groups. Significantly greater microbial diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper mineral layer (0–5 cm) compared to the above organic and the lower mineral soil, signifying substantial influence of soil depth on biotic interactions. This study supports the view that different microbial groups are adapted to different forest soil strata, with varying level of interactions along the depth gradient.

Til dokument

Sammendrag

1. Predicting plant–pollinator interaction networks over space and time will improve our understanding of how environmental change is likely to impact the functioning of ecosystems. Here we propose a framework for producing spatially explicit predictions of the occurrence and number of pairwise plant–pollinator interactions and of the species richness, diversity and abundance of pollinators visiting flowers. We call the framework ‘MetaComNet’ because it aims to link metacommunity dynamics to the assembly of ecological networks. 2. To illustrate the MetaComNet functionality, we used a dataset on bee–flower networks sampled at 16 sites in southeast Norway along with random forest models to predict bee–flower interactions. We included variables associated with climatic conditions (elevation) and habitat availability within a 250 m radius of each site. Regional commonness, site-specific distance to conspecifics, social guild and floral preference were included as bee traits. Each plant species was assigned a score reflecting its site-specific abundance, and four scores reflecting the bee species that the plant family is known to attract. We used leave-one-out cross-validations to assess the models' ability to predict pairwise plant–bee interactions across the landscape. 3. The relationship between observed occurrence or absence of interactions and the predicted probability of interactions was nearly proportional (GLMlogistic regression slope = 1.09), matching the data well (AUC = 0.88), and explained 30% of the variation. Predicted probability of interactions was also correlated with the number of observed pairwise interactions (r = 0.32). The sum of predicted probabilities of bee–flower interactions were positively correlated with observed species richness (r = 0.50), diversity (r = 0.48) and abundance (r = 0.42) of wild bees interacting with plant species within sites. 4. Our findings show that the MetaComNet framework can be a useful approach for making spatially explicit predictions and mapping plant–pollinator interactions. Such predictions have the potential to identify areas where the pollination potential for wild plants is particularly high, and where conservation action should be directed to preserve this ecosystem function. interactions, network, plants, pollinators, predict, random forest

Til dokument

Sammendrag

The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m−2 in the 290–315 nm range (and 0.59 W m−2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 μmol m−2 s−1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.

Til dokument

Sammendrag

Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.

Til dokument

Sammendrag

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cβ of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.

Til dokument

Sammendrag

The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesized that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents, were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at 7 different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regards to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum.