Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of soy leghemoglobin produced from genetically modified Komagataella phaffii for food uses in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Soy leghemoglobin produced from genetically modified Komagataella phaffii This application is submitted to gain authorisation for the use of soy leghemoglobin (the liquid preparation is referred to as “LegH Prep”) produced from genetically modified Komagataella phaffii (yeast) as a flavouring (“meaty taste”) in meat analogue products that will be marketed in the European Union (EU). Soy leghemoglobin is intended for addition to meat analogue products that are for use in foods such as burgers, meatballs, and sausages. Komagataella phaffii-strain employed in the production of soy leghemoglobin contains genetic modifications which allow it to express this protein. Following fermentation, the cells are lysed, and the soy leghemoglobin is concentrated by physical means. The soy leghemoglobin is delivered in a liquid preparation (LegH Prep) that is standardised to contain up to 9% soy leghemoglobin on a wet weight basis and a soy leghemoglobin protein purity of at least 65%. The remainder of the protein fraction in the LegH Prep is accounted for by residual proteins from the Komagataella phaffii production strain. These residual proteins are all endogenous to Komagataella phaffii as the gene coding for the expression of soy leghemoglobin is the only gene from a different organism. VKM has assessed the documentation in application EFSA-GMO- NL-2019-162 and EFSA's scientific opinion for the use of soy leghemoglobin produced from genetically modified Komagataella phaffii. The scientific documentation provided in the application is adequate for risk assessment, and in accordance with the EFSA guidance on risk assessment of genetically modified microorganisms for use in food or feed. The VKM GMO Panel does not consider leghemoglobin from genetically modified Komagataella phaffii to imply potential specific health risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment was not performed by VKM. About the assignment: (...)

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP51291 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Genetically modified maize DP51291 Genetically modified maize DP51291 (application GMFF-2021-0071) was developed via Agrobacterium tumefaciens mediated transformation. DP51291 plants contain the transgenes ipd072Aa and pat which encode the proteins IPD072Aa and PAT (phosphinothricin acetyltransferase). IPD072Aa confers protection against susceptible corn rootworm pests, and the PAT protein confers tolerance to glufosinate herbicide. The phosphomannose isomerase (PMI) protein that was used as a selectable marker. VKM has assessed the documentation in application GMFF-2021-0071 and EFSA's scientific opinion on genetically modified maize DP51291. VKM concludes that the applicant's scientific documentation for the genetically modified maize DP51291 is satisfactory for risk assessment, and in accordance with EFSA guidelines for risk assessment of genetically modified plants for food or feed uses. The genetic modifications in maize DP51291 do not indicate an increased health or environmental risk in Norway compared with EU countries. EFSA's risk assessment is therefore sufficient also for Norwegian conditions. As no specific Norwegian conditions have been identified regarding properties of the genetically modified maize DP51291, VKM's GMO panel has not performed a complete risk assessment of the maize. (...)

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of soy leghemoglobin produced from genetically modified Komagataella phaffii for food uses in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Soy leghemoglobin produced from genetically modified Komagataella phaffii This application is submitted to gain authorisation for the use of soy leghemoglobin (the liquid preparation is referred to as “LegH Prep”) produced from genetically modified Komagataella phaffii (yeast) as a flavouring (“meaty taste”) in meat analogue products that will be marketed in the European Union (EU). Soy leghemoglobin is intended for addition to meat analogue products that are for use in foods such as burgers, meatballs, and sausages. Komagataella phaffii-strain employed in the production of soy leghemoglobin contains genetic modifications which allow it to express this protein. Following fermentation, the cells are lysed, and the soy leghemoglobin is concentrated by physical means. The soy leghemoglobin is delivered in a liquid preparation (LegH Prep) that is standardised to contain up to 9% soy leghemoglobin on a wet weight basis and a soy leghemoglobin protein purity of at least 65%. The remainder of the protein fraction in the LegH Prep is accounted for by residual proteins from the Komagataella phaffii production strain. These residual proteins are all endogenous to Komagataella phaffii as the gene coding for the expression of soy leghemoglobin is the only gene from a different organism. VKM has assessed the documentation in application EFSA-GMO- NL-2019-162 and EFSA's scientific opinion for the use of soy leghemoglobin produced from genetically modified Komagataella phaffii. The scientific documentation provided in the application is adequate for risk assessment, and in accordance with the EFSA guidance on risk assessment of genetically modified microorganisms for use in food or feed. The VKM GMO Panel does not consider leghemoglobin from genetically modified Komagataella phaffii to imply potential specific health risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment was not performed by VKM. About the assignment: (...)

Sammendrag

Målet med denne undersøkelsen var å undersøke avlingsnivå og fôrkvalitet gjennom en hel vekstsesong, både i ubeita vegetasjon, men også avlingsutvikling og fôrkvalitet ved gjentatte avbeitinger. Tørrstoffavling og fôrkvalitet ble bestemt ved hvert høstingstidspunkt. Et høyt antall kjente beiteplanter i prøvematerialet indikerer at faktisk nyttbar avling er høy. En total tørrstoffproduksjon på 538 kg TS/daa i høgstaudeeng og 188 kg TS/daa i høgstaudeskog tilsier også at med riktig dyreantall, målrettet beite og kontinuerlig foryngelse av plantematerialet, kan dyrene høste betydelige mengder fôr med tilfredsstillende kvalitet gjennom en hel beitesesong.

Til dokument

Sammendrag

Dyrking av engvekster til beite og vinterfôr til stor- og småfe er grunnpilaren i norsk husdyrhold. I Norge har timotei vært hovedart i dyrka eng siden midten av 1800-tallet, og er fortsatt den viktigste grasarten i engdyrkinga. På Østlandet blandes timotei vanligvis med engsvingel, og engrapp går ofte inn i mer varige blandinger. I tørkeutsatte områder benyttes i tillegg bladfaks. Timotei og engsvingel har liten rotmasse og er ikke spesielt tørkesterke, mens bladfaks har et dypt og effektivt rotsystem med stor evne til å ta opp vann i tørre perioder. Den har imidlertid dårligere fôrkvalitet enn timotei og engsvingel. Strandsvingel er en forholdsvis ny art i norsk engdyrking. Den har et stort og dypt rotsystem og er regnet for å være et meget tørke- og varmetolerant gras. I tillegg viser den god overvintringsevne, tilfredsstillende fôrkvalitet og et høyt avlingspotensial. Strandsvingel er i liten grad tatt i bruk i praktisk dyrking i Norge, men synes i blanding med timotei å være interessant for utprøving på tørkeutsatt jord på Østlandet både med hensyn til tørketoleranse, overvintringsevne, avlingspotensial og fôrkvalitet. I dette prosjektet er ulike frøblandinger der timotei går inn sammen med enten engsvingel, strandsvingel eller bladfaks og blandinger med flere av disse artene undersøkt. Prosjektets mål var å oppnå høyere avlingsstabilitet i timoteibaserte enger på Østlandet under varierende vekstforhold. Fire forsøksfelt ble anlagt på Sør-Østlandet og i fjell- og dalbygdene på Østlandet. To felt på tørkeutsatt jord, ett på ikke tørkeutsatt jord og ett på flomutsatt jord. Seks ulike frøblandinger med timotei i blanding med engsvingel, strandsvingel eller bladfaks i ulike kombinasjoner ble sammenlignet i forsøkene.