Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Forfattere
Jana Fránová Jaroslava Pribylová Rostislav Zemek Jiunn Luh Tan Zhibo Hamborg Dag-Ragnar Blystad Ondrej Lenz Igor KoloniukSammendrag
Det er ikke registrert sammendrag
Forfattere
Jana Fránová Jaroslava Pribylová Rostislav Zemek Jiunn Luh Tan Zhibo Hamborg Dag-Ragnar Blystad Ondrej Lenz Igor KoloniukSammendrag
Det er ikke registrert sammendrag
Forfattere
Igor Koloniuk Jana Fránová Jaroslava Pribylová Tatiana Sarkisova Josef Špak Jiunn Luh Tan Rostislav Zemek Radek Cmejla Martina Rejlová Lucie Valentová Jiri Sedlák Jan Holub Jan Skalik Dag-Ragnar Blystad Bijaya Sapkota Zhibo HamborgSammendrag
Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.
Sammendrag
Tomat er følsom for mange virus og viroider, men det har likevel ikke vært vanlig å finne virus og viroider i norske tomatveksthus de siste ti-årene. Det har nå dukket opp et nytt virus i tomat i Europa som vekker stor bekymring. Det er tomatbrunflekkvirus (tomato brown rugose fruit virus, ToBRFV). Mattilsynet gjennomførte derfor i 2021 og 2022 et kartleggingsprogram for ToBRFV i samarbeid med NIBIO. I 2021, ble det samlet inn 394 prøver (som representerte 3940 individuelle planter) fra i alt 17 gartnerier, hovedsakelig fra Rogaland. Det ble i 2022 samlet inn 150 prøver (som representerte 3000 individuelle planter) fra i alt 7 småplante tomatgartnerier. Det ble ikke påvist ToBRFV i noen av prøvene. Det ble imidlertid funnet ToBRFV i en prøve som ble sendt inn til Planteklinikken fra et mindre gartneri i Vestfold på forsommeren 2021.
Forfattere
Britt Puidet Romain Mabon Michele Guibert Riinu Kiiker Kaire Loit Vinh Hong Le Håvard Eikemo Pauline Dewaegeneire Guillaume Saubeau Catherine Chatot Frédérique Aurousseau David E. L. Cooke Alison K. Lees Isaac K. Abuley Jens G. Hansen Roselyne Corbière Melen Leclerc Neda Najdabbasi Didier AndrivonSammendrag
Since the mid-2010s, Phytophthora infestans clones that have been dominant in Western Europe from the beginning of the 21st century, for example, EU_13_A2, EU_6_A1 and EU_1_A1, are being replaced by several other emerging clones, including EU_37_A2. The objective of this study was to determine whether the main drivers for the success of EU_37_A2 in Western Europe are associated with decreased fungicide sensitivity, increased virulence and/or aggressiveness. Axenic P. infestans cultures were sampled in the 2016 and 2017 growing seasons from potato crops in France and the United Kingdom. Amongst these, four genotypes were identified: EU_37_A2, EU_13_A2, EU_1_A1 and EU_6_A1. Although a wide range of fluazinam sensitivity was found amongst individual isolates, clonal lines EU_13_A2 and EU_37_A2 showed decreased sensitivity to fluazinam. EU_37_A2 overcame the R5 differential cultivar more often than isolates of EU_1_A1 or EU_6_A1. However, this does not explain the competitive advantage of EU_37_A2 over the virulent EU_13_A2. The fittest genotype, as measured by aggressiveness under controlled conditions, was EU_6_A1, followed by EU_37_A2, EU_13_A2 and then EU_1_A1. EU_37_A2 isolates also showed a shorter latent period than either EU_6_A1 or EU_13_A2, which could favour its long-term persistence. Overall, the data suggest that the emergence of EU_37_A2 in Western Europe was driven by its resistance to a then-major fungicide and shorter generation time. This conclusion is further supported by the fact that EU_37_A2 emergence was slowed by the progressive reduction in the use of fluazinam as a single active ingredient in the years following its initial detection.
Forfattere
Hang Su Andre van Eerde Espen Rimstad Ralph Bock Norica Branza-Nichita Igor A. Yakovlev Jihong Liu ClarkeSammendrag
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.
Forfattere
Samuel W. Wilkinson Adam Hannan Parker Amos Muench Robert Simon Wilson K. Hooshmand M.A. Henderson Emma K. Moffat P.S.C.F. Rocha H. Hipperson J.H.M. Stassen Ana López Sánchez Inge S. Fomsgaard Paal Krokene Melissa Magerøy Jurriaan TonSammendrag
Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Carrot is the main field vegetable in Norway and is stored at 0-1°C for up to 8 months. In long-stored carrots, postharvest diseases are problematic. Better knowledge of the causal agents of postharvest diseases can help producers apply appropriate control measures to reduce carrot loss and waste. The objectives of this study were to determine the extent of the tip rot problem and the prevalence of other storage diseases of carrots in different regions in Norway. The study was conducted from 2019 to 2021 by collecting carrots from 16 commercial cold storages, representing four regions. From each storage, representative carrots were randomly sampled, washed, and sorted into different disease categories and healthy carrots. Representative samples from each category were further analyzed in the NIBIO laboratory to identify the causal agent(s) and confirm the disease. Causal agent(s) were identified by symptom and sign description, microscopy and when necessary, DNA sequencing. One or more pathogens were identified from each symptomatic carrot. The incidence of postharvest diseases significantly varied among regions. Taking all years and regions together, only 42% of the carrots were healthy. In other words, 58% of the carrots were with one or more diseases, representing a waste due to diseases alone. Tip rot alone contributed to about 30% of the postharvest loss. Our results indicate that the burden of postharvest diseases of carrots is increasing. This includes diseases like tip rot disease complex, Cylindrocarpon root rot and cavity spot. The results are useful to direct research investigation of the most problematic diseases. Most of the post-harvest diseases of carrots are the result of latent infections that occur in the field, and stress during handling, storage, and processing operations. Hence, postharvest disease control measures should consider the pre-and postharvest predisposing factors of carrots for storage rot.