Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Etter oppdrag fra Miljødirektoratet har NIBIO ansvaret for prøvetaking og drift av sju overvåkingsfelt for jordbruksbelastet grunnvann. Haslemoen i Våler kommune, Rimstadmoen i Larvik kommune, Horpestad i Klepp kommune, Nedre Eri i Lærdal kommune, Skogmo i Overhalla kommune, Grødalen i Sunndal kommune samt Lofthus i Ullensvang kommune. Gjennom finansiering fra «Handlingsplan for bærekraftig bruk av plantevernmidler 2022-2025» har det blitt utført tilleggsundersøkelser på disse lokalitetene. Herunder supplerende prøvetaking, analyser av «nye» plantevernmidler, analyse av plantevernmidler i ulike jorddyp for utvalgte kulturer samt drift av automatisk overvåking av grunnvann og markvann. Finansieringen har gitt synergi og økt kunnskapen om plantevernmidler i grunnvann i jordbruksområder. Alle lokalitetene ligger innenfor nasjonale grunnvannsforekomster, som gitt i Vann-Nett. Rapporten gir oversikt over resultater i perioden 2022-2023.

Til dokument

Sammendrag

Ett bra utsäde är en förutsättning för en lyckad spannmålsodling. Utsädet bör ha god grobarhet,vara friskt samt ha minsta möjliga inblandning av annat frö. Rensning och kvalitetstestning är betydelsefullt för att uppnå detta, men grunden läggs genom att ha kontroll över odlingsförhållanden, tröskning, torkning och lagring.

Sammendrag

1. Root and butt rot caused by pathogenic fungi in the genera Heterobasidion and Armillaria is a pressing issue in managed Norway spruce forests. The disease results in financial losses for the forest owners and reduces the volume of wood that can be used in long-lived products. Pathogenic wood decay fungi spread either with the aid of airborne spores or via mycelial growth among neighbouring trees, the latter leading to clustering (tendency of decayed trees to be in close proximity relative to their neighbouring trees) of decay-affected trees in forests. Understanding the spatial patterns of the decay-affected trees at the forest stand level is vital for designing management strategies to address this problem. 2. We examined decay clustering in 273 clear-cut Norway spruce stands in Norway using harvester-recorded data on spatial occurrence of decayed and healthy Norway spruce trees. We tested clustering using three global-cluster tests that account for population density and distribution, evaluating clustering without identifying specific cluster locations. 3. The proportions of clustered and non-clustered stands differed depending on the statistical test used for clustering assessment, resulting in overall agreement of 32.8% for clustered and 36.9% for non-clustered. Clustered stands exhibited a median cluster distance (maximum distance between the decay-affected trees within a cluster) of 12 m (Inter-Quantile Range, IQR, 6–20 m) and a median of 6 (IQR 3–16) nearest neighbour trees (number of decayed trees forming a cluster), estimates comparable with prior studies focused on assessment of trees infected by mycelial spread of the same fungal individual. The decay incidence in the clustered stands was 16.24%, while the non-clustered stands had a butt-rot incidence of 20.97%. In clustered stands the average number of trees per hectare was higher (693) than in non-clustered stands (553). 4. Synthesis and applications: Our study demonstrates that Norway spruce stands display a diverse range of spatial patterns of butt rotted trees. We found that higher densities of Norway spruce trees probably facilitate the vegetative spread of pathogenic wood decay fungi, leading to clustering of decay-affected trees. To disrupt the spread of decay fungi between tree generations, precision planting of trees other than Norway spruce around infested stumps of prior generation trees has been recommended by earlier studies. We discussed the potential of using harvester-derived geoposition data for butt-rotted trees upon planning and execution of forest regeneration.

Sammendrag

Timothy ( Phleum pratense L.) is the predominant forage grass species in the northern parts of the Nordic region. Because of the long andharsh winters and a short growing season, most of it with continuous light, the need for locally adapted timothy seed has been recognizedfor more than a century. However, the seed production of timothy in these marginal environments is unpredictable with acceptable seedyield and quality on average only every third year. Thus, a multiplication scheme for the northern cultivars was established with only pre-basic seed produced in the north, and basic and certified seed produced further south to secure enough seed of good quality. In recentdecades this scheme has been more or less abandoned with continous generations produced in the south. Farmers are complaining andare questioning whether the cultivars has changed and lost winter hardiness. We studied freezing and ice-encasement tolerance of generations of the the northern timothy cultivars ‘Engmo’ (old landrace) and ‘Noreng’(synthetic) multiplied for one, two or three generations in Central, Southern and Northern Norway. The trials introduce very largedifferences in mean temperature, growing degree days and photoperiod between place of parental origin and sites of multiplication so theeffects on fitness observed could arise from both selection and and induced epigenetic changes. Large changes (loss) in freezing and ice-encasement tolerance were observed, especially at the southern location in the first generation.The cultivars behaved differently and there were significant interactions. The extreme phenotypic changes observed might be explained bygenetic selection or epigenetic memory of the environmental conditions experienced during seed production, or a combination of the two.We are currently analysing GBS data of all generations and this will be used to test whether genetic shifts has occured during themultiplication in the different environments.