Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2009

Til dokument

Sammendrag

The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing 13C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test 13C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a 13CO2-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on watersoluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, 13C-labeling increased linearly with time. The difference in δ13C signature between water-soluble and insoluble fractions was 7% after 0.5 h and 70% after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugarsRstarch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: δ13C=414±3.7% and 56±5.5%, respectively. Thus, the technique generates labeled plant residues displaying contrasting 13C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long-term storage of their constitutive C in soils.

Sammendrag

Published data of pH and conductivity in some acid humic waters have shown erroneous corresponding values. This means that the values were not consistent with each other according to well-recognized hydrochemistry. A main questions was arised in this connection. Were the measurements correct and if not which of them were wrong, pH, conductivity or both ? Assessment on basis of calculated and measured conductivity values, by using published data and own measurements, indicate primarily erroneous pH measurements. This makes the scientific papers which are based on these remarkable results partly of questionable value. Conductivity should generally act as a controlling parameter even if the latter also could have some uncertainties.

Til dokument

Sammendrag

Tie long-term use of a filter-based, on-site wastewater treatment system increases nutrient discharge to receiving waters and may reduce its hygienic barrier efficiency. The main purpose of this research was to assess the hygienic barrier efficiency and the associated health risks of an on-site system that had exceeded its 5-yr design capacity with respect to phosphorus (P) removal. The system was investigated for bacteria and virus removal and assessed with respect to potential health risks in relation to reuse of effluent for irrigation. The system consists of a septic tank, a pressure-dosed vertical flow biofilter, and an up-flow filter unit with lightweight clay aggregates. The total P concentration in the effluent had increased gradually from initially <0.1 mg P L-1 during the first 2 yr of operation to 1.8 mg P L-1 after 5.3 yr. Escherichia coli was used as an indicator organism for fecal bacteria removal, whereas bacteriophages phi X174 and Salmonella typhimurium phage 28B (S.t. 28B) were used to model enteric virus removal. An overall decrease in E. coli removal occurred from a complete (approximately 5.6 log(10)) reduction during the first 3 yr of operation to 2.6 log(10) reduction. The removal amounts of the bacteriophages phi X174 and S.t. 28B were 3.9 and 3.7 log(10), respectively. Based on removal of S.t. 28B, the risks of rotavirus infection and disease for the investigated scenarios were above the acceptable level of 10(-4) and 10(-3), respectively, as defined by the World Health Organization.