Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2009

Sammendrag

To års resultater i Norsk frøavlerlags forskingsprosjekt "Bekjemping av skadedyr ved frøavl av rødkløver" viser stor årsvariasjon i forekomsten av kløvergnager (Hypera nigrirostris) og tre ulike arter rødkløversnutebiller(Apion sp.). Ved siden av mye bedre pollineringsforhold er særlig forekomsten av kløvergnager med å forklare hvorfor gjennomsnittlig frøavling av rødkløver var tre ganger så stor i 2008 som i 2007. I Mjøsbygdene finnes lite eller ikke kløvergnager, men ellers viser funn i vannfeller at dette skadeinsektet kan angripe rødkløver allerede ved begynnende strekningsvekst i siste halvdel av mai. Foreløpige resultater fra småskalaforsøk i 2008 tyder på at det på dette tidspunktet er sikrere å sprøyte med neonikotinoidet Biscaya, som har god dybde- og langtidsvirkning, enn med pyretroider som Fastac og Karate. Overfor Mattilsynet vil vi derfor anbefale at frøeng av kløver tas med på etiketten til Biscaya. I 2008 var imidlertid gjentatt insektsprøyting lønnsomt bare i halvparten av kløverfrøengene som ble behandla, og det gjenstår å se om dette er annerledes i år med større insektangrep og ved bruk av Biscaya istedenfor Fastac ved første sprøyting. Målet må være å komme fram til skadeterskler, slik at vi unngår rutinemessig insektsprøyting der dette ikke er nødvendig.

Sammendrag

Om trender og muligheter med hest som næring. Denne artikkelen bygger i stor grad på erfaringer gjennom prosjektet ”Hest som næring i Finnmark” 2006-2008, der forfatter var prosjektleder.

Sammendrag

Silver nanoparticles constitute one of the most common nanomaterials used in consumer products today, and the volumes used are increasing dramatically. Silver is an element known for its acute toxicity to both prokaryotes and a range of aquatic organisms. While ecotoxicity studies on nano-sliver is being studied at species level for some aquatic organisms, corresponding studies on terrestrial organisms are lagging behind. Also, studies targeting functional endpoints rather than purely physiological aspects are lacking. We have compared two types of nano-silver differing in average particle size (1 and 20 nm) with respect to their inhibitory effects on a pure strain of the soil bacterium Paracoccus sp. Which is an efficient denitrifyer capable of transforming NO3 into N2. This process is an important step in the biogeochemical cycling of N, and one that may potentially produce large amounts of the potent green house gas N2O if impeded by environmental pollutants. The results show that nano-silver is highly toxic to denitrifying bacteria and that low amounts severely affect the process of denitrification. Studies using indigenous denitrifying bacterial communities incubated in the presence of different concentrations of nano-silver in soil slurries are under way and will provide data where soil constituents affect the bioavailability nano-silver in a close to realistic exposure scenario. The implications of the relationship between toxicity levels in pure cultures and soil slurries will be discussed regarding the bioavailability of nanoparticles as pollutants in terrestrial environments.

Sammendrag

Due to the exponential increase in production and marketing of engineered nanomaterials, concerns are raised about their inevitable spreading in the environment. Soils, with their high proportion of solid phase, are likely to constitute the major ultimate sink for engineered nanoparticles (ENPs). Regrettably, data are scarce on the potential environmental risks of ENPs on soil ecosystems. The main reason for this key knowledge gap was the lack of methodologies able to trace the ENPs in complex environmental matrices like soils, which already contain a high background of natural nanoparticles (e.g. clays, organic matter, iron oxides). Using neutron activation as a tracer technique enabled us to overcome this hurdle: neutron activated ENPs can readily be quantified by gamma spectrometry, in all kind of samples, including living organisms. Here we examined the uptake and excretion kinetics of cobalt (Co-NPs, APS 3.9 ± 0.8 nm) and silver nanoparticles (Ag-NPs, APS 20.2 ± 2.5 nm) in the earthworm Eisenia fetida, as well as their internal distribution within worms. We compared the uptake, retention time and internal ditribution of Co-NPs and Ag-NPs with those of soluble salts of cobalt and silver. Earthworms were fed over a 28d period with horse manure contaminated with either neutron activated Co-NPs and Ag-NPs, or Co and Ag salts spiked with the radiotracers 60Co and 110mAg. Accumulation and excretion kinetics were assessed by gamma spectrometry on living earthworms along a three month period for silver treatments and a five month period for cobalt treatments. The patterns of accumulation were highly different for cobalt and silver. The concentration ratios [(Bq/g worm) / (Bq/g food)] after 28d uptake were 0.93 ± 0.36 and 2.02 ± 0.65 for Co-NP and Co2+, respectively, while corresponding values for Ag-NPs and Ag+ were 0.015 ± 0.016 and 0.054 ± 0.024, respectively. Almost all absorbed Co-NPs and Co2+ remained within the worms four months after transfer to clean soil, while Ag concentration ratios fell to almost zero within a few days. We investigated futher the distribution of Co-NPs and Co2+ in worms bodies by coupling autoradiography images of worm transects and gamma spectrometry on individual organs. The body wall, mainly composed of muscular fibers, and the reproductive organs (e.g. spermathecae and seminal vesicles) accumulated lower amounts of cobalt than the digestive tract. By far, the highest accumulation was found in the blood, namely in the pseudo-hearts.

Sammendrag

One of the major concerns regarding use of velvet bentgrass in Scandinavia is whether current cultivars are sufficiently tolerant to frost. In 2008-09 the four velvet bentgrass (VB, Agrostis canina L.) cultivars Avalon, Greenwich, Legendary, and Villa, and the creeping bentgrass (CB, Agrostis stolonifera L.) cultivar Penn A-4 (control) were established from seed in 7.5x10x10 cm pots filled with a USGA-spec. sand containing 0.5% (w/w) organic matter. The following four treatments representing different phases of cold acclimation were compared: (i) nonacclimated (NA) plants maintained at 18 °C/12 °C (day/night) and 16 h photoperiod (150 μmol/m/s); (ii) plants acclimated at 2 °C and 16 h photoperiod (250 μmol/m/s) for 2 wk (A2); (iii) plants acclimated as ii plus 2 wk of sub-zero acclimation in darkness at -2 °C (A2+SZA2); and (iv) naturally acclimated plants under outdoor (field) conditions in November -December (FA). Freezing tolerance was assessed visually as percent of pot surface covered with healthy turf after 26 days of recovery in the greenhouse. To examine the relationship between physiological changes under cold acclimation and freezing tolerance, crowns of VB and CB were harvested for carbohydrate (CHO) analysis after each hardening treatment. Results showed that FA plants survived all freezing treatments (plant coverage more than 90 %). A2+SZA2 plants had better survival after freezing to -9 °C, -12 °C and -15 °C as compared with A2 plants. Differences in freezing tolerance between VB and CB were not significant. NA plants survived none of freezing temperatures. The predominant CHO in VB and CB crowns were sucrose and fructans. Compared with NA plants, A2 plants had significantly higher concentrations of fructose, sucrose and fructan. Exposure to -2 ºC in darkness (A2+SZA2) had no further effect on these concentrations. Natural hardening (FA) resulted in total carbohydrate and fructan concentrations significantly lower than for plants exposed to artificial acclimation.