Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Csilla FarkasSammendrag
Det er ikke registrert sammendrag
Sammendrag
A large proportion of the soils in Norway require artificial drainage to improve the conditions for crop growth and field operations, but also to reduce the risk of soil compaction, surface runoff and erosion. The need for artificial drainage depends on climate, topography, soil type, groundwater conditions, and also the crop. At present, about 60-70 % of the agricultural land in Norway is artificially drained. Future climate change is expected to lead to higher temperatures, more precipitation and more frequent extreme events in Norway. This poses a challenge with respect to the drainage systems as more intensive drainage than present today may be required in some areas, although it is unclear whether this will be an efficient solution. In this study we aimed to evaluate the possible future changes in subsurface runoff and water balance elements at the Kvithamar experimental site. We set up the and calibrated the DrainMod model for the experimental data from poorly and optimally drained experimental fields. The calibrated model was further used to evaluate changes in subsurface runoff and the water cycle as a whole under changing conditions. We tested the effect of different drainage system designs (drain depth and spacing) on water regime under present and future climate conditions. It was quite difficult to calibrate the DrainMod model for surface runoff and drain flow measured from the Kvithamar lysimeter plots and to find a parameter set that could give a reasonable partitioning of the water. We concluded that due to the complexity of the hydrological regime of a drained field the effect of drains can be masked by other factors, like land use and spatio-temporal variability of soil properties. Our simulation results indicate that drainage system design has a big effect on surface and subsurface runoff as well as on evapotranspiration. Concerning future changes in the hydrological regime, the results varied depending on the future climate scenarios selected.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Eva BrodSammendrag
Det er ikke registrert sammendrag
Forfattere
Monica JayesinghaSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Palingamoorthy Gnanamoorthy Qinghai Song Junbin Zhao Yiping Zhang Yuntong Liu Wenjun Zhou Liqing Sha Zexin Fan Pramit Kumar Deb BurmanSammendrag
Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011–2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was −718 ± 128 g C m−2 as a sink in the pre-disturbance years (2011–2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%–93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.
Forfattere
Tove Aagnes Utsi Nigel Yoccoz Claire Armstrong Victoria Gonzalez Snorre Hagen Ingibjörg Svala Jónsdóttir Nhat Minh Pham Francisco I. Pugnaire Katriona Shea David A. Wardle Sophia Zielosko Kari Anne BråthenSammendrag
Det er ikke registrert sammendrag
Forfattere
Alexander Kopatz Oddmund Kleven Ilpo Kojola Jouni Aspi Anita J. Norman Göran Spong Niklas Gyllenstrand Love Dalén Ida Marie Luna Fløystad Snorre Hagen Jonas Kindberg Øystein FlagstadSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag