Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Store mengder god jord med frø eller rotstengler av fremmede invaderende karplanter deponeres hvert år. For en mer bærekraftig forvaltning av jordressurser ønsket Statens vegvesen å undersøke om slik jord fra veianlegg isteden kan kanaliseres til jordbruket der vanlig ugraskontroll og drift forhåpentligvis kan kontrollere de uønskede artene. I prosjektet FoU-forsøk «Håndtering av jordmasser infisert av fremme karplanter gjennom landbruket» gjennomførte vi tre forsøk der vi 1. undersøkte etablering av kanadagullris fra lagret A-sjikt tilbakeført til eng, 2. etablering av kanadagullris fra infisert jord lagt ut på arealer til korndyrking, og 3. bruk av geiter til å kontrollere slireknearter i infisert jord lagt ut til beite. Resultatene fra disse forsøkene presenteres i denne rapporten. Resultatene viser at disse tilnærmingene kan fungere, men effektene må dokumenteres bedre.

Til dokument

Sammendrag

Aims To investigate and compare antimicrobial resistance genes (ARGs) in faeces from cohabiting dogs and owners. Methods and Results DNA from faecal samples from 35 dogs and 35 owners was screened for the presence of 34 clinically relevant ARGs using high throughput qPCR. In total, 24 and 25 different ARGs were present in the dog and owner groups, respectively. The households had a mean of 9.9 ARGs present, with dogs and owners sharing on average 3.3 ARGs. ARGs were shared significantly more in households with dogs over 6 years old (3.5, interquartile range 2.75–5.0) than in households with younger dogs (2.5, interquartile range 2.0–3.0) (p = 0.02). Dogs possessed significantly more mecA and aminoglycoside resistance genes than owners. Conclusions Dogs and owners can act as reservoirs for a broad range of ARGs belonging to several antimicrobial resistance classes. A modest proportion of the same resistance genes were present in both dogs and owners simultaneously, indicating that ARG transmission between the dog and human gut is of minor concern in the absence of antimicrobial selection. Significance and Impact of the Study This study provides insight into the common dog and human gut resistomes, contributing to an improved knowledge base in risk assessments regarding ARG transmission between dogs and humans.

Til dokument

Sammendrag

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, potential toxic elements (PTEs), fertiliser, soil improver, fertiliser products, growing media, circular economy, circulation of organic fertilisers, arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn). Background and purpose of the report The potentially toxic elements (PTE) arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) occur as ingredients or contaminants in many fertilisers, soil improvers, engineered soil and growing media. Application of these fertiliser products might represent a risk towards the environment, farm animals and humans, particularly when applied annually over several years. The present risk assessment evaluates the application of selected fertilisers according to certain scenarios for representative Norwegian agricultural areas, from Troms in the North to Ås in Southeastern and Time in Southwestern Norway, with different soil properties, precipitation and PTE concentration in present agricultural soil. There is an increasing trend to produce locally (e.g. in urban farming) and home-grown vegetables that are cultivated in engineered soil and growth media. The maximum levels (MLs) set for PTEs in different organic fertilisers, engineered soil and growing media for use in urban farming, home growing and the cultivation of vegetables and garden fruits, and a set of MLs also for application in agricultural cultivation of crops, have been evaluated. Environmental fate processes and the transfer of PTEs have been modelled and the environmental risks for terrestrial and aquatic organisms, including from secondary poisoning have been estimated. Potential risks to humans and farmed animals by increased exposure to PTEs from, respectively, agriculturally produced crops, vegetables cultivated at home and urban farming or forage and grazing have been evaluated. The recycling of nutrients is urgently needed to achieve circular economy, but the derived sustainable products have to be safe, which requires the introduction of and adherence to science-based maximum levels of unwanted substances (e.g. pollutants). This assessment evaluates consequences of the application of different fertiliser products: mineral P fertilisers, manure from cattle, pig, poultry and horse, fish sludge, digestates and sewage sludge - in order to identify PTE sources with potential environmental, animal and human health risks, and to evaluate the appropriateness of the current MLs regarding different applications of organic-based fertilisers, engineered soil and growing media at present, and in a 100-year perspective. Approach and methods applied The approach for environmental and health risk assessments builds on previous work performed for hazardous substances in soil (e.g. VKM 2019, VKM 2014, VKM, 2009, Six and Smolders, 2014). Concentrations of PTEs in soil over time were calculated using a mass balance model, which considers the input by atmospheric deposition, use of fertilisers and soil improvers, as well as loss by leaching, run-off and plant uptake. The resulting first-order differential equation was solved analytically and implemented into Excel®. Run-off and loss by leaching were estimated from data on precipitation, infiltrating fraction and run-off fraction of the water under consideration of the distribution coefficient Kd for the concentration ratio of bulk soil-to-water. This Kd value takes aging sufficiently into account and is thus more realistic than those derived from batch tests. The Kd was estimated separately for each region using established regression equations, with soil pH, organic matter content and clay content as predictors. ...........

Til dokument

Sammendrag

Microplastics ending up in nature as a result of end-of-life processes for plastic packaging is a serious environmental concern, and was addressed in the Packnoplast project through sampling at three sites: one biogas facility in Norway and two thermoplastic recycling plants, one in Norway and one in The Netherlands. The amounts of microplastics ending up in soil from biogas digestate was estimated to represent 0.4-2 mg/kg soil per year if 6 t/daa of biogas digestate is used as fertilizer. Food packaging is estimated to represent 75% of this. The amounts of microplastics measured are significant, but too small to affect soil properties even on a time-scale of decades. The risk of adverse effects on soil quality, plant growth or soil organisms seem very low at the current predicted rates of plastic inputs to soil. Since plastics are virtually non-degradable, they are still prone to accumulate in soil, and waste streams recycled to soil need to address and prevent plastic contamination even better than today. Thermoplastic recycling plants are handling large amounts of plastic, and during processes in the plant, microplastics are generated. Concentrations of microplastic particles varied from 7 to 51 particles per lite rin the effluent water from the two plants. Discharges of effluent water are often through the sewer system and/or into a water body. Today regulations regarding discharges of microplastics are missing. Sand filter treatment of the effluent water was a promising treatment technique to remove the microplastics. Background concentrations of microplastics, comparable to pristine areas, were found in blue mussels sampled outside the thermoplastic recycling plant in Norway. Knowledge about the risk imposed by microplastics to the aquatic environment is today not known.

Til dokument

Sammendrag

I feltforsøk med lett rulling av en rødsvingeldominert golfgreen ved Københavns golfklubb i 2020 og 2021 ble effekten på Microdochiumflekk studert. Greenen ble rullet to eller fire ganger i uka i tre eller fem måneder fram til november hvert år. Det var ikke noe soppangrep i 2021, men resultatene fra 2020 viste at rulling hadde statistisk sikker effekt og reduserte mikrodochiumflekk fra 5% på ubehandlet til 2,0 og 2,3 % der det var rullet henholdsvis to eller fire ganger i uka. Grønnfarge og visuelt helhetsinntrykk ble også påvirket av rulling. Helhetsinntrykket ble forbedret av rulling. Grønnfargen om høsten var best for ubehandlede ruter i 2020, men det var ingen forskjeller i 2021. Forsøket antyder at lett rulling to ganger i uka fra august til november kan redusere angrep av mikrodochiumflekk på rødsvingeldominerte greener i Skandinavia.