Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.

Sammendrag

WebGIS avløp er et fagsystem for private avløpsløsninger i kommunene. Applikasjonen beregner utslipp til resipient og effekter av planlagte tiltak. I tillegg kan WebGIS avløp også brukes til administrativ oppfølging, tilsyn, pålegg og rapportering.

Til dokument

Sammendrag

To investigate the possible family influence on sea lice grazing of lumpfish on Atlantic salmon, ten families of lumpfish (N = 480) with a mean (± SD) weight of 54.8 ± 9.2 g were distributed among ten sea cages (5 × 5 × 5 m) each stocked with 400 Atlantic salmon with a mean (± SD) weight of 621.4 ± 9.2 g. All the ten cages were stocked with 48 lumpfish (12% stocking density). The stocking of cages was such that each cage consisted of two random families where full- and paternal half-sib families were randomly allocated to the different cages. There were clear differences in sea lice grazing efficacy, growth and cataract prevalence between the ten families assessed in this study. Lumpfish from families 2, 6 and 10 had the lowest mean weights but showed comparable growth rates compared to the other families throughout the study and this may be as a direct result of genetic influence. In addition, fish from these families had a significantly higher incidence of lice grazing of both L. salmonis and C. elongatus compared to the other families. Using mixed linear model to analyse the data revealed significant family and paternal effect on sea lice grazing. There was a trend for a reduction in sea lice grazing with increased size within each family. The results indicated that it was the smallest size classes of lumpfish (40–140 g) which exhibited higher sea lice grazing potential compared to the larger size classes within families. There were no clear differences in the lice grazing potential between male and female lumpfish within and between families. Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus can be enhanced using targeted family production and if this behaviour has a genetic basis it may further enhanced through selection and targeted breeding programs.

Sammendrag

Rovebekken drenerer mye av Sandefjord lufthavn. Det ble ikke påvist glykol i de 27 ukeblandprøvene fra Rovebekken i 2020. Det ble påvist formiat i en stikkprøve, ellers ikke. Ved fiskeundersøkelsen høsten 2020 ble det registert årsyngel av ørret på den øvre stasjonen (R 3-4), rett nedstrøms flyplassen. På stasjonene videre nedover ble det registrert både årsyngel og eldre ørretunger. Oppsummert viste overvåkingen gjennom 2020 tilfredsstillende vannkvalitet i Rovebekken, med god oksygenstatus og ingen påvisninger av glykol. Resultatene viser at kravene i utslippstillatelsen har blitt overholdt.

Til dokument

Sammendrag

Knowledge about the connectivity among natural populations is essential to identify management units for effective conservation actions. Conservation-minded management has led to the recovery of large carnivore populations in northern Europe, possibly restoring connectivity between the two separated, but expanding brown bear (Ursus arctos) populations on the Scandinavian peninsula to the west and Karelia, a part of the large Eurasian population, to the east. The degree of connectivity between these populations has been poorly understood, therefore we investigated the extent of connectivity between the two populations using autosomal microsatellites and Y chromosome haplotypes in 924 male bears (the dispersing sex), sampled during a period of 12 years (2005–2017) across the transborder area where these two populations meet. Our results showed that the two populations are not genetically isolated as reported in earlier studies. We detected recent asymmetrical gene flow at a rate (individuals per generation) of 4.6–5.5 (1%) from Karelia into Scandinavia, whereas the rate was approximately 27.1–34.5 (8%) in the opposite direction. We estimated historical gene flow of effective number of migrants to be between 1.7 and 2.5 between the populations. Analyses of Y chromosome markers supported these results. Successful recovery and expansion of both populations led to the restoration of connectivity, however, it is asymmetric, possibly due to different recovery histories and population densities. By aligning monitoring between neighboring countries, we were able to better understand the biological processes across the relevant spatial scale. Brown bear Genetic structure Male gene flow Microsatellites Migration Recovery Ursus arctos Wildlife monitoring Y chromosome

Sammendrag

This study describes microbial and chemical source tracking approaches for water pollution in rural and urban catchments. Culturable faecal indicator bacteria, represented by Escherichia coli, were quantified. Microbial source tracking (MST) using host-specific DNA markers was applied to identify the origins of faecal contamination. Chemical source tracking (CST) was conducted to determine contaminants of emerging concern (CEC) of human/anthropogenic origin, including pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs). In addition, the eutrophication-causing macronutrients nitrogen and phosphorus were studied. MST tests revealed both anthropogenic and zoogenic faecal origins, with a dominance of human sources in the urban stream; non-human/environmental sources were prevalent in the rural creek. CST analyses revealed a higher number of CECs in the urban stream than in the rural watercourse. Positive correlations between PPCPs and both E. coli and the human DNA marker were uncovered in the urban stream, while in the rural creek, PPCPs were only highly correlated with the anthropogenic marker. Interestingly, macronutrients were strongly associated with primary faecal pollution origins in both watercourses. This correlation pattern determines the main pollutant contributors (anthropogenic or zoogenic) to eutrophication.

Til dokument

Sammendrag

Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.