Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Defense priming, the sensitization of inducible defenses, has been extensively studied in annual angiosperms. However, we are just beginning to explore defense priming in woody, long-lived plants. The natural compound methyl jasmonate (MeJA) has been used for over 20 years to study spruce inducible defenses. Recently, it was discovered that MeJA not only directly induces defense, but also primes defense responses in spruce. Metabolite and transcriptional analyses of mature trees treated with MeJA and subsequently wounded showed that while terpenes accumulate at the wound site in a primed manner, terpene biosynthesis genes are directly induced by MeJA. Pathogen resistance (PR) genes, on the other hand, are primed. Sequencing of miRNAs suggests that miRNAs have a regulatory role in MeJA-induced defenses in spruce. Additionally, a detailed transcriptional time course of 2- year-old spruce treated with MeJA indicated that the RNA-directed DNA methylation (RdDM) pathway is involved in the establishment and maintenance of primed defenses. When comparing mechanisms of defense priming in spruce to those in Arabidopsis, it seems that many mechanisms are conserved. However, some aspects, such as jasmonic acid-salicylic acid crosstalk, may be different. Identifying these differences and how they affect forest species is important for practical application of defense priming in forest management.

Til dokument

Sammendrag

Control of grey mould, caused by Botrytis spp., is a major challenge in open field strawberry production. Botrytis was isolated from plant parts collected from 19 perennial strawberry fields with suspected fungicide resistance in the Agder region of Norway in 2016. Resistance to boscalid, pyraclostrobin and fenhexamid was high and found in 89.1%, 86.0% and 65.4% of conidia samples, respectively. Multiple fungicide resistance was common; 69.6% of conidia samples exhibited resistance to three or more fungicides. Botrytis group S and B. cinerea sensu stricto isolates were obtained from 19 and 16 fields, respectively. The sdhB, cytb, erg27 and mrr1 genes of a selection of isolates were examined for the presence of mutations known to confer fungicide resistance to boscalid, pyraclostrobin, fenhexamid and pyrimethanil plus fludioxonil, respectively. Allele-specific PCR assays were developed for efficient detection of resistance-conferring mutations in cytb. Among B. cinerea isolates, 84.7%, 86.3% and 61.3% had resistance-conferring mutations in sdhB, cytb and erg27, respectively. A triplet deletion in mrr1, resulting in ΔL497, commonly associated with the multidrug resistance phenotype MDR1h, was detected in 29.2% of Botrytis group S isolates. High frequencies of resistance to several fungicides were also detected in Botrytis from both imported and domestically produced strawberry transplants. Fungicide resistance frequencies were not different among fields grouped by level of grey mould problem assessed by growers, indicating factors other than fungicide resistance contributed to control failure, a fact that has important implications for future management of grey mould.

Til dokument

Sammendrag

Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar ‘Anitra’ are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.

Til dokument

Sammendrag

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant leukemia with extremely limited treatment for relapsed patients. N6‐methyladenosine (m6A) reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) participates in the initiation and growth of cancers by communicating with various targets. Here, we found IGF2BP2 was highly expressed in T-ALL. Gain and loss of IGF2BP2 demonstrated IGF2BP2 was essential for T-ALL cell proliferation in vitro and loss of IGF2BP2 prolonged animal survival in a human T-ALL xenograft model. Mechanistically, IGF2BP2 directly bound to T-ALL oncogene NOTCH1 via an m6A dependent manner. Furthermore, we identified a small-molecule IGF2BP2 inhibitor JX5 and treatment of T-ALL with JX5 showed similar functions as knockdown of IGF2BP2. These findings not only shed light on the role of IGF2BP2 in T-ALL, but also provide an alternative γ‑Secretase inhibitors (GSI) therapy to treat T-ALL.