Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Sammendrag
Soil disinfestation by steaming is being reconsidered for its efficiency in controlling or even eradicating pathogens, nematodes and weed seeds, particularly to avoid excess use of pesticides. Most weeds within a field result from seeds in the soil seedbank and therefore management of weed seeds in the soil seedbank offers practical long-term management of weeds, especially those difficult to control. We investigated the possibility of thermal control of seeds of grass weeds Bromus sterilis (barren brome) and Echinochloa crus-galli (barnyardgrass) using a prototype of a soil steaming device. Five different soil temperatures of 60, 70, 80, 90 and 99°C with an exposure duration of 3 min were tested. Four replications of 50 seeds of each species were placed in polypropylene-fleece bags. Bags in the same replicate of each target temperature were placed at the bottom of one plastic perforated basket container and covered by a 7-cm soil layer. Each basket was placed in the steaming container and steam was released from the top and vacuumed from the bottom of the container. Soil temperature was monitored by 10 thermocouples and steaming was stopped when 5 of the thermocouples had reached the target temperature. The basket was then removed from the steaming container after 3 min exposure time. Bags were taken out, opened, placed on soil surface in pots and covered by a thin layer of soil. Seed germination was followed for 8 weeks in the greenhouse. Non-steamed seeds were used as controls. It was shown that soil temperatures of 60, 70, 80, 90 and 99°C lasting for 3 min reduced the seed germination of barren brome by 83, 100, 100, 95 and 100% and seed germination of barnyardgrass by 74, 69, 83, 89 and 100% respectively, compared to the controls. Germination rate of control seeds were 94 and 71% for barren brome and barnyardgrass, respectively. These results show a promising seed mortality level of these two weed species by steaming and that steam is a potential method to control weed seeds, however further studies are needed to investigate the effect of other factors such as soil type and moisture content. Keywords: Non-chemical weed control, thermal soil disinfection, weed seedbank
Sammendrag
Invasive plant propagative material can be introduced to new regions as contaminants in soil. Therefore, moving soil should be done only when the soil has been verified to be free of invasive species. Stationary soil steaming as a non-chemical control method has the potential to disinfect soil masses contaminated with invasive species. We investigated the possibility of thermal control of propagative material of Bohemian knotweed (Reynoutria × bohemica) in two experiments using a prototype of a soil steaming device. Five soil temperatures of 60, 70, 80, 90 and 99 °C with an exposure duration of 3 min were tested. In each replicate and target temperature, rhizome cuttings containing at least two buds and shoot clumps were placed at the bottom of a plastic perforated basket and covered by a 7-cm soil layer. Each basket was placed in the steaming container and steam was released from the top and vacuumed from the bottom. Soil temperature was monitored by 10 thermocouples and steaming was stopped when 5 of the thermocouples had reached the target temperature. The basket was then removed from the steaming container after 3 min. Plant materials were taken out and planted in pots. Buds sprouting was followed for 8 weeks. Non-steamed plant materials were used as controls. Results showed 100% rhizome death at soil temperatures of ≥70 and 99 °C in the first and second experiments, respectively. Shoot clumps death was obtained at ≥90 °C in both experiments. These results showed that steaming at 99 °C for 3 min can guarantee control of Bohemian knotweed in infested soils supporting the steam treatment as a potential method of disinfecting soil against invasive species. However, depending on the intended re-use of the soil, further studies are needed on the effect of potential negative impacts of high temperatures on the soil quality.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Store mengder god jord med frø eller rotstengler av fremmede invaderende karplanter deponeres hvert år. For en mer bærekraftig forvaltning av jordressurser ønsket Statens vegvesen å undersøke om slik jord fra veianlegg isteden kan kanaliseres til jordbruket der vanlig ugraskontroll og drift forhåpentligvis kan kontrollere de uønskede artene. I prosjektet FoU-forsøk «Håndtering av jordmasser infisert av fremme karplanter gjennom landbruket» gjennomførte vi tre forsøk der vi 1. undersøkte etablering av kanadagullris fra lagret A-sjikt tilbakeført til eng, 2. etablering av kanadagullris fra infisert jord lagt ut på arealer til korndyrking, og 3. bruk av geiter til å kontrollere slireknearter i infisert jord lagt ut til beite. Resultatene fra disse forsøkene presenteres i denne rapporten. Resultatene viser at disse tilnærmingene kan fungere, men effektene må dokumenteres bedre.
Sammendrag
Reusing soil can reduce environmental impacts associated with obtaining natural fresh soil during road construction and analogous activities. However, the movement and reuse of soils can spread numerous plant diseases and pests, including propagules of weeds and invasive alien plant species. To avoid the spread of barnyardgrass in reused soil, its seeds must be killed before that soil is spread to new areas. We investigated the possibility of thermal control of barnyardgrass seeds using a prototype of a stationary soil steaming device. One Polish and four Norwegian seed populations were examined for thermal sensitivity. To mimic a natural range in seed moisture content, dried seeds were moistened for 0, 12, 24, or 48 h before steaming. To find effective soil temperatures and whether exposure duration is important, we tested target soil temperatures in the range 60 to 99 C at an exposure duration of 90 s (Experiment 1) and exposure durations of 30, 90, or 180 s with a target temperature of 99 C (Experiment 2). In a third experiment, we tested exposure durations of 90, 180, and 540 s at 99 C (Experiment 3). Obtaining target temperatures was challenging. For target temperatures of 60, 70, 80, and 99 C, the actual temperatures obtained were 59 to 69, 74 to 76, 77 to 83, and 94 to 99 C, respectively. After steaming treatments, seed germination was followed for 28 d in a greenhouse. Maximum soil temperature affected seed germination, but exposure duration did not. Seed premoistening was of influence but varied among temperatures and populations. The relationships between maximum soil temperature and seed germination were described by a common dose–response function. Seed germination was reduced by 50% when the maximum soil temperature reached 62 to 68 C and 90% at 76 to 86 C. For total weed control, 94 C was required in four populations, whereas 79 C was sufficient in one Norwegian population.
Forfattere
Katherine Ann Gredvig Nielsen Magne Nordang Skårn Venche Talgø Martin Pettersson Inger Sundheim Fløistad Gunn Strømeng May Bente Brurberg Arne StensvandSammendrag
Det er ikke registrert sammendrag
Sammendrag
Established invasive alien plant species make it difficult and costly to move and make use of infested soil in public and private construction work. Stationary soil steaming as a non-chemical control method has the potential to disinfect soil masses contaminated with seeds and other propagative plant materials. The outcome can vary depending on steaming temperature and duration. Higher temperatures and longer durations are relatively more efficient but may also have side-effects including change in soil physical and chemical characteristics. Barnyard grass (Echinochloa crus-galli) is among troublesome invasive species in Norway. We have tested different steam duration at 99°C to find the possible lowest effective exposure duration for killing seeds of this annual grass species. Four replications of 40 barnyard grass dry seeds of one population were placed in polypropylene-fleece bags (9*7 cm), moistened for 12 hours, and covered by the soil at a depth of 7 cm in 60*40*20 cm boxes. The boxes with soil and bags were steamed at 99°C for 1.5, 3 and 9 min. The bags including steamed seeds were taken out, opened, placed on soil surface in pots and covered by a thin layer of soil. The pots were placed in greenhouse and watered from below and seed germination was followed for a month. Moistened non-steamed seeds were used as control. It was shown that steaming at 99°C gave 0% germination indicating that 100% of the seeds were killed regardless of exposure duration while in the control seed germination was 100%. Consequently, to achieve an efficacy of 100%, exposure duration of 1.5 min would be enough. Finding the lowest possible steam temperature and exposure duration to get the highest possible seed killing in a seed mixture of different plant species as well as other factors to increase the heat transferability are under investigation. Keywords: Echinochloa crus-galli; Resource recovery; Steaming temperature and duration; Thermal soil disinfection
2021
Forfattere
Thomas Solvin Kjersti Bakkebø Fjellstad Inger Sundheim Fløistad Gunnar Friis Proschowsky Torben Leisgaard Antti Lännenpää Tiina Ylioja Brynjar Skúlason Hallur S. Björgvinsson Nina Hårdnes Tremoen Ellinor Edvardsson Claes Uggla Espen StokkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Raquel Benavides Bárbara Carvalho Cristina C. Bastias David López-Quiroga Antonio Mas Stephen Cavers Alan Gray Audrey Albet Ricardo Alía Olivier Ambrosio Filippos Aravanopoulos Francisco Auñón Camilla Avanzi Evangelia V. Avramidou Francesca Bagnoli Eduardo Ballesteros Evangelos Barbas Catherine Bastien Frédéric Bernier Henry Bignalet Damien Bouic William Brunetto Jurata Buchovska Ana M. Cabanillas-Saldaña Nicolas Cheval José M. Climent Marianne Correard Eva Cremer Darius Danusevičius Benjamin Dauphin Fernando Del Caño Jean-Luc Denou Bernard Dokhelar Rémi Dourthe Anna-Maria Farsakoglou Andreas Fera Patrick Fonti Ioannis Ganopoulos José M. García del Barrio Olivier Gilg Santiago C González-Martínez René Graf Delphine Grivet Felix Gugerli Christoph Hartleitner Katrin Heer Enja Hollenbach Agathe Hurel Bernard Issehuth Florence Jean Veronique Jorge Arnaud Jouineau Jan-Philipp Kappner Katri Kärkkäinen Robert Kesälahti Florian Knutzen Sonja T. Kujala Timo Kumpula Mariaceleste Labriola Celine Lalanne Johannes Lambertz Martin Lascoux Gregoire Le Provost Mirko Liesebach Ermioni Malliarou Jérémy Marchon Nicolas Mariotte Elisabet Martínez-Sancho Silvia Matesanz Helge Meischner Célia Michotey Pascal Milesi Sandro Morganti Tor Myking Anne Eskild Nilsen Eduardo Notivol Lars Opgenoorth Geir Østreng Birte Pakull Andrea Piotti Christophe Plomion Nicolas Poinot Mehdi Pringarbe Luc Puzos Tanja Pyhäjärvi Annie Raffin José A Ramírez-Valiente Christian Rellstab Sebastian Richter Juan J Robledo-Arnuncio Sergio San Segundo Outi Savolainen Volker Schneck Silvio Schueler Ivan Scotti Vladimir Semerikov Jørn Henrik Sønstebø Ilaria Spanu Jean Thevenet Mari Mette Tollefsrud Norbert Turion Giovanni Giuseppe Vendramin Marc Villar Johan Westin Bruno Fady Fernando ValladaresSammendrag
Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope 13C and 15N in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
Forfattere
Lars Opgenoorth Benjamin Dauphin Raquel Benavides Katrin Heer Paraskevi Alizoti Elisabet Martínez-Sancho Ricardo Alía Olivier Ambrosio Albet Audrey Francisco Auñón Camilla Avanzi Evangelia Avramidou Francesca Bagnoli Evangelos Barbas Cristina C Bastias Catherine Bastien Eduardo Ballesteros Giorgia Beffa Frédéric Bernier Henri Bignalet Guillaume Bodineau Damien Bouic Sabine Brodbeck William Brunetto Jurata Buchovska Melanie Buy Ana M Cabanillas-Saldaña Bárbara Carvalho Nicolas Cheval José M Climent Marianne Correard Eva Cremer Darius Danusevičius Fernando Del Caño Jean-Luc Denou Nicolas Di Gerardi Bernard Dokhelar Alexis Ducousso Anne Eskild Nilsen Anna-Maria Farsakoglou Patrick Fonti Ioannis Ganopoulos José M. García del Barrio Olivier Gilg Santiago C González-Martínez René Graf Alan Gray Delphine Grivet Felix Gugerli Christoph Hartleitner Enja Hollenbach Agathe Hurel Bernard Issehut Florence Jean Veronique Jorge Arnaud Jouineau Jan-Philipp Kappner Katri Kärkkäinen Robert Kesälahti Florian Knutzen Sonja T Kujala Timo A Kumpula Mariaceleste Labriola Celine Lalanne Johannes Lambertz Martin Lascoux Vincent Lejeune Gregoire Le-Provost Joseph Levillain Mirko Liesebach David López-Quiroga Benjamin Meier Ermioni Malliarou Jérémy Marchon Nicolas Mariotte Antonio Mas Silvia Matesanz Helge Meischner Célia Michotey Pascal Milesi Sandro Morganti Daniel Nievergelt Eduardo Notivol Geir Østreng Birte Pakull Annika Perry Andrea Piotti Christophe Plomion Nicolas Poinot Mehdi Pringarbe Luc Puzos Tanja Pyhäjärvi Annie Raffin José A Ramírez-Valiente Christian Rellstab Dourthe Remi Sebastian Richter Juan J Robledo-Arnuncio Sergio San Segundo Outi Savolainen Silvio Schueler Volker Schneck Ivan Scotti Vladimir Semerikov Lenka Slámová Jørn Henrik Sønstebø Ilaria Spanu Jean Thevenet Mari Mette Tollefsrud Norbert Turion Giovanni Giuseppe Vendramin Marc Villar Georg von Arx Johan Westin Bruno Fady Tor Myking Fernando Valladares Filippos A Aravanopoulos Stephen CaversSammendrag
Background Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information. Findings The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species’ geographic ranges and reflecting local environmental gradients. Conclusion The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.