Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Bartonella spp. are fastidious, Gram‐negative, aerobic, facultative intracellular bacteria that infect humans, domestic and wild animals. In Norway, Bartonella spp. have been detected in cervids, mainly within the distribution area of the arthropod vector deer ked (Lipoptena cervi ). We used PCR to survey the prevalence of Bartonella spp. in blood samples from 141 cervids living outside the deer ked distribution area (moose [Alces alces , n = 65], red deer [Cervus elaphus , n = 41], and reindeer [Rangifer tarandus , n = 35]), in 44 pool samples of sheep tick (Ixodes ricinus , 27 pools collected from 74 red deer and 17 from 45 moose) and in biting midges of the genus Culicoides (Diptera: Ceratopogonidae, 120 pools of 6710 specimens). Bartonella DNA was amplified in moose (75.4 %, 49/65) and in red deer (4.9 %, 2/41) blood samples. All reindeer were negative. There were significant differences in Bartonella prevalence among the cervid species. Additionally, Bartonella was amplified in two of 17 tick pools collected from moose and in 3 of 120 biting midge pool samples. The Bartonella sequences amplified in moose, red deer and ticks were highly similar to B. bovis , previously identified in cervids. The sequence obtained from biting midges was only 81.7 % similar to the closest Bartonella spp. We demonstrate that Bartonella is present in moose across Norway and present the first data on northern Norway specimens. The high prevalence of Bartonella infection suggests that moose could be the reservoir for this bacterium. This is the first report of bacteria from the Bartonella genus in ticks from Fennoscandia, and in Culicoides biting midges worldwide.

Til dokument

Sammendrag

Recently developed CRISPR-mediated base editors, which enable the generation of numerous nucleotide changes in target genomic regions, have been widely adopted for gene correction and generation of crop germplasms containing important gain-of-function genetic variations. However, to engineer target genes with unknown functional SNPs remains challenging. To address this issue, we present here a base-editing-mediated gene evolution (BEMGE) method, employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA (sgRNA) library tiling the full-length coding region, for developing novel rice germplasms with mutations in any endogenous gene. To this end, OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bombardment-mediated transformation. Four different types of amino acid substitutions in the evolved OsALS1, derived from two sites that have never been targeted by natural or human selection during rice domestication, were identified, conferring varying levels of tolerance to the herbicide bispyribac-sodium. Furthermore, the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing with the corresponding base editor and sgRNA. Collectively, these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.

Til dokument

Sammendrag

The main objective of this paper is to present the new model BASGRA_N, to show how it was parameterized for grass swards in Scandinavia, and to evaluate its performance in predicting above-ground biomass, crude protein, cell wall content and dry matter digestibility. The model was developed to allow simulation of: (1) the impact of N-supply on the plants and their environment, (2) the dynamics of greenhouse gas emissions from grasslands, (3) the dynamics of cell-wall content and digestibility of leaves and stems, which could not be simulated with its predecessor, the BASGRA-model. To calibrate and test the model, we used field experimental data. One dataset included observations of biomass (DM) and crude protein content (CP) under different N fertilizer regimes from five sites in central and southern Sweden. The other dataset included observations of DM, and sward components as well as CP, cell wall content (NDF) and DM digestibility as affected by harvesting regime from one site in southwestern Norway. The total number of experiments was nine, of which three were used for model testing. When BASGRA_N was run with the maximum a-posteriori (MAP) parameter vector from the Bayesian calibration for the Swedish test sites, DM and CP were both simulated to an overall Pearson correlation coefficient (Rb) of minimum 0.58, Willmott's index of agreement (d) of minimum 0.69 and normalized root mean squared error (NRMSE) of maximum 0.30. Corresponding metrics for Norwegian test sites were 0.93, 0.96 and 0.27 for DM and > 0.73, > 0.61, < 0.18 for DM digestibility, NDF and CP content, respectively. We conclude that BASGRA_N can be used to simulate yield and CP responses to N with satisfactory precision, while maintaining key features from its predecessor. The results also suggest that DM digestibility and NDF can be simulated satisfactorily, which is supported by results from a recent model comparison study. Further testing of the model is needed for a few variables for which we currently do not have enough data, notably leaching and emission of N-containing compounds. Further work will include application of the model to investigate greenhouse gas mitigation options, and evaluation against independent data for the conditions for which it will be applied.