Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (Zea mays L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (Vicia villosa Roth.), February orchid (Orychophragmus violaceus), and winter oilseed rape (Brassica campestris L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N2O) emissions and had a very limited effect on ammonia (NH3) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses via N2O and NH3 emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Jian LiuSammendrag
Det er ikke registrert sammendrag
Forfattere
Martha Irene Grøseth Linda Karlsson Håvard Steinshamn Marianne Johansen Alemayehu Kidane Egil PrestløkkenSammendrag
A continuous production experiment was conducted in Norway with 48 Norwegian Red dairy cows in early- to mid-lactation, to investigate the effect of grass silage with lactic acid bacteria (LAB) or formic acid (FA) additives, on milk yield (MY) and milk protein yield (MPY). Grass wilted to 250 g dry matter (DM)/kg was inoculated with homofermentative LAB to obtain LAB silage, whilst FA silage was produced adding a FA-based additive. The two silages were fed ad libitum and supplemented with an average 10.3 kg of either high (H) or low (L) metabolizable protein (MP) concentrates, in a 2 ✗ 2 factorial arrangement of treatments. The treatments were LAB silage and L concentrate, LAB silage and H concentrate, FA silage and L concentrate and FA silage and H concentrate. The use of FA resulted in lower levels of residual water-soluble carbohydrates (WSC), and higher levels of ammonia nitrogen (NH3single bondN), compared to LAB. In situ results for FA silage showed lower rumen degradability of crude protein (CP), while gas in vitro results showed lower utilizable CP (uCP), compared to LAB silage (782 vs. 750 g/kg DM and 128 vs. 119 g/kg DM, respectively). The purine over creatinine (PDC) index did not indicate any effects on the microbial protein synthesis (MPS) from any of the treatments. The higher daily intake of FA silage (12.5 vs.13.7 kg DM for LAB and FA, respectively, P < 0.001), did not result in significant differences in daily MY (31.0 vs. 30.2 kg, P = 0.208), nor MPY (1.08 vs.1.07 kg/day, P = 0.878) for LAB and FA, respectively. Feeding H concentrate gave higher MPY (P = 0.036), higher urea in milk (P < 0.001), plasma (P < 0.001) and urine (P = 0.008) and tended to give higher MY (P = 0.063) for both silages. For amino acids (AA) in plasma, alanine was higher for FA silage than for LAB silage (P = 0.030), while histidine (P = 0.001), leucine (P = 0.015) and glutamine (P = 0.007) were higher for both silages when cows were fed H concentrate. In conclusion, the FA and LAB additives did not affect MY or MPY any differently. Feeding H concentrate resulted in higher MPY for both silages, but reduced nitrogen (N) efficiency.
Forfattere
Siri Johanne Langmo Marie Bogstad Ree Torbjørn Haukås Randi Therese Garmo Stine Grønmo KischelSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Jian LiuSammendrag
Det er ikke registrert sammendrag
Forfattere
Jian Liu Faruk Djodjic Barbro Ulen Helena Aronsson Robert Barneveld Marianne Bechmann Lars Bergström Tore Krogstad Sigrun Hjalmarsdottir Kværnø Katarina Kyllmar Anne Falk Øgaard Lillian Øygarden Eva SkarbøvikSammendrag
Det er ikke registrert sammendrag